有关高一数学教学计划五篇
时光在流逝,从不停歇,我们将带着新的期许奔赴下一个挑战,是不是需要好好写一份教学计划呢?但是教学计划要写什么内容才能让人眼前一亮呢?下面是小编帮大家整理的高一数学教学计划8篇,仅供参考,大家一起来看看吧。
高一数学教学计划 篇1
金色九月,又是一年开学季,各位老师们你们的教学计划准备好了吗。下面是一份高一数学上学期教学工作计划,具体详细内容包括对教学思想、教材、教法和学情的分析等等,希望对每一位高一数学的老师有一定的帮助。
一、教学思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
俗话说的好,好的教学计划是教学成功的一半,作为一名优异的教师,做好一定的教学计划很有必要。
高一数学教学计划 篇2
(1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
学情分析及相关措施:
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:(1)注意研究学生,做好初、高中学习方法的衔接工作。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
教学进度安排:
周 次 时 内 容 重 点、难 点
第1周
9.2~9.6 5 集合的含义与表示、
集合间的基本关系、
会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念
第2周
9.7~9.13 5 集合的基本运算
函数的概念、
函数的表示法 能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用
第3周
9.14~9.20 5 单调性与最值、
奇偶性、实习、小结 学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义
第4周
9.21~9.27 5 指数与指数幂的运算、
指数函数及其性质 掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念
第5周
9.28~10.4 5 (9月月考?、国庆放假)
第6周
10.5~10.11 5 对数与对数运算、
对数函数及其性质 理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数
第7周
10.12~10.18 5 幂函数 从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质
第8周
10.19~10.25 5 方程的根与函数零点,
二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解;
第9周
10.26~11.1 5 几类不同增长的模型、函数模型应用举例 对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义
第10周
11.2~11.8 期中复习及考试 分章归纳复习+1套模拟测试
第11周
11.9~11.15 5 任意角和弧度制
任意角的三角函数 了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义
第12周
11.16~11.22 5 三角函数的诱导公式
三角函数的图像和性质 借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性
第13周
11.23~11.29 5 函数y=Asin(wx+q)的图像 借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响
第14周
11.30~12.6 5 三角函数模型的简单应用 单元考试 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型
第15周
12.7~12.13 5 平面向量的实际背景及基本概念,平面向量的线性运算 掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算
第16周
12.14~12.20 5 平面向量的基本定理及坐标表示,平面向量的数量积, 理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系
第17周
12.21~12.27 5 平面向量应用举例,
小结 用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力
第18周
12.28~1.3 5 两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系
第19周
1.4~1.10 5 简单的三角恒等变换
高一数学教学计划 篇3
教学分析
课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.
值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.
三维目标
1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.
2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.
重点难点
教学重点:交集与并集、全集与补集的概念.
教学难点:理解交集与并集的概念,以及符号之间的区别与联系.
课时安排
2课时
教学过程
第1课时
作者:尚大志
导入新课
思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.
思路2.请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.
思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?
图1
②观察集合A,B与集合C={1,2,3,4}之间的关系.
学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.
(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.
②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.
推进新课
新知探究
提出问题
(1)通过上述问题中集合A,B与集合C之间的关系,类比实数的加法运算,你发现了什么?
(2)用文字语言来叙述上述问题中,集合A,B与集合C之间的关系.
(3)用数学符号来叙述上述问题中,集合A,B与集合C之间的关系.
(4)试用Venn图表示A∪B=C.
(5)请给出集合的并集定义.
(6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A,B与集合C之间有什么关系?
①A={2,4,6,8,10},B={3,5,8,12},C={8};
②A={x|x是国兴中学20xx年9月入学的高一年级女同学},B={x|x是国兴中学20xx年9月入学的高一年级男同学},C={x|x是国兴中学20xx年9月入学的高一年级同学}.
(7)类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.
活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.
讨论结果:(1)集合之间也可以相加,也可以进行运算,但是为了不和实数的运算相混淆,规定这种运算不叫集合的加法,而是叫做求集合的并集.集合C叫集合A与B的并集.记为A∪B=C,读作A并B.
(2)所有属于集合A或属于集合B的元素组成了集合C.
(3)C={x|x∈A,或x∈B}.
(4)如图1所示.
(5)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集.其含义用符号表示为A∪B={x|x∈A,或x∈B},用Venn图表示,如图1所示.
(6)集合之间还可以求它们的公共元素组成的集合,这种运算叫求集合的交集,记作A∩B,读作A交B.①A∩B=C,②A∪B=C.
(7)一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.
其含义用符号表示为:
A∩B={x|x∈A,且x∈B}.
应用示例
例1 集合A={x|x<5 b="{x|x">0},C={x|x≥10},则A∩B,B∪C,A∩B∩C分别是什么?
活动:学生先思考集合中元素的特征,明确集合中的.元素.将集合中元素利用数形结合在数轴上找到,那么运算结果寻求就易进行.这三个集合都是用描述法表示的数集,求集合的并集和交集的关键是找出它们的公共元素和所有元素.
解:因为A={x|x<5 b="{x|x">0},C={x|x≥10},在数轴上表示,如图3所示,所以A∩B={x|00},A∩B∩C= .
变式训练
1.设集合A={x|x=2n,n∈N*},B={x|x=2n,n∈N},求A∩B,A∪B.
解:对任意m∈A,则有m=2n=2?2n-1,n∈N*,因n∈N*,故n-1∈N,有2n-1∈N,那么m∈B,即对任意m∈A有m∈B,所以A?B.
而10∈B但10 A,即A B,那么A∩B=A,A∪B=B.
2.求满足{1,2}∪B={1,2,3}的集合B的个数.
解:满足{1,2}∪B={1,2,3}的集合B一定含有元素3,B={3};还可含1或2其中一个,有{1,3},{2,3};还可含1和2,即{1,2,3},那么共有4个满足条件的集合B.
3.设集合A={-4,2,a-1,a2},B={9,a-5,1-a},已知A∩B={9},求a.
解:∵A∩B={9},则9∈A,a-1=9或a2=9.
∴a=10或a=±3.
当a=10时,a-5=5 ,1-a=-9;
当a=3时,a-1=2不合题意;
当a=-3时,a-1=-4不合题意.
故a=10.此时A={-4,2,9,100},B={9,5,-9},满足A∩B={9}.
4.设集合A={x|2x+1<3},B={x|-3
A.{x|-3
C.{x|x>-3} D.{x|x<1}
解析:集合A={x|2x+1<3}={x|x<1},
观察或由数轴得A∩B={x|-3
答案:A
例2 设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0,a∈R},若A∩B=B,求a的值.
活动:明确集合A,B中的元素,教师和学生共同探讨满足A∩B=B的集合A,B的关系.集 合A是方程x2+4x=0的解组成的集合,可以发现,B?A,通过分类讨论集合B是否为空集来求a的值.利用集合的表示 法来认识集合A,B均是方程的解集,通过画Venn图发现集合A,B的关系,从数轴上分析求得a的值.
解:由题意得A={-4,0}.
∵A∩B=B,∴B?A.
∴B= 或B≠ .
当B= 时,即关于x的方程x2+2(a+1)x+a2-1=0无实数解,
则Δ=4(a+1)2-4(a2-1)<0,解得a<-1.
当B≠ 时,若集合B仅含有一个元素,则Δ=4(a+1)2-4(a2-1)=0,解得a=-1,
此时,B={x|x2=0}={0}?A,即a=-1符合题意.
若集合B含有两个元素,则这两个元素是-4,0,
即关于x的方程x2+2(a+1)x+a2-1=0的解是-4,0.
则有-4+0=-2(a+1),-4×0=a2-1.
解得a=1,则a=1符合题意.
综上所得,a=1或a≤-1.
变式训练
1.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A?(A∩B)成立的所有a值的集合是什么?
解:由题意知A?(A∩B),即A?B,A非空,利用数轴得 解得6≤a≤9,即所有a值的集合是{a|6≤a≤9}.
2.已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m -1},且A∪B=A,试求实数m的取值范围.
分析:由A∪B=A得B?A,则有B= 或B≠ ,因此对集合B分类讨论.
解:∵A∪B=A,∴B?A.
又∵A={x|-2≤x≤5}≠ ,∴B= ,或B≠ .
当B= 时,有m+1>2m-1,∴m<2.
当B≠ 时,观察图4:
高一数学教学计划 篇4
由于初中的基础参差不齐,班级学生的整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好制定如下教学工作计划。
一、指导思想:
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力,以及分析和解决问题的能力、数学表达和交流的能力、发展独立获取数学知识的能力。
3、发展数学应用意识和创新意识,提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二、教材特点:
我们所使用的教材是北师大版《普通高中课程标准实验教科书·数学》,本期教学内容:数学必修3、必修4。
它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,具体有如下特点:
1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。三、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。
2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。四、教学措施:
1、激发学生的学习兴趣。通过数学活动、小故事等,树立学生的学习信心,积极发挥学生的主观能动性。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
4、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。重视数学应用意识及应用能力的培养。
高一数学教学计划 篇5
一、所教班级学生现状分析:
高一(3)全班共52人,男生28人,女生24人。高一(4)全班53人,男生27人,女生26人。 从两个班级总体上看,重文轻理的同学比较多,数学基础普遍不好,这主要体现在他们的学习方法,学习习惯不是很合理。女同学学的都比较死,做过的题目没什么 大的问题,但数学题目的变化是最灵活的,这时候女同学就会体现出灵活应变的能力不强。这样的话,数学题目是做不完的,若是纯粹是为了做题目而做题目的话, 即使是做的量再大,也不会有质的飞跃。关键在于通过解题,把同一类型的题目归归类,总结出解这类题型的一般常规方法或一般路径,也就是说在自己脑海里形成 一套通识、通则、通法来。相对于女同学,男同学存在的问题较大,这主要还是在上课的纪律上面,行为习惯养不好,学习成绩怎么能提高上去呢?这里所说的行为 习惯是指:上课注意力不集中,不专心听讲,做其他与上课无关的事;上课部分同学时常趴在桌子上睡觉,并且屡教不改;上课讲废话等等。这些都是学生自身的态 度问题,特别像骆启聪,陈铭生,洪润,上课不听,作业不交是经常发生的事。他们并不是脑子笨,不聪明,没这个能力学好,而确实是学习态度不端正,已经有一 点老油条的感觉了。我对这些人用的方法除了人盯人外,没有更好的办法了。
二、 本学期力争达到的目标
1、知识和技能
(1)在学生于九年制义务教育阶段已经学过的平面图形有关性质的基础上,比较系统地研究空间的直线和平面的基本性质。
(2)在具有一定的空间想象能力的基础上让学生进一步掌握几种常见的多面体:棱拄、棱锥、棱台的定义、有关性质、直观图的画法和体积以及有关元素的计算。
(3)学习向量的初步知识如向量的各种计算及其简单应用
2、 提高课堂听课的效率和平时作业的质量,进一步规范学生的学习规范和态度,从每一堂课,每一次小练习做起。要细心捕捉差生的闪光点,以此为起点,耐心指导, 不断激励。让其感受到成功的喜悦,增强自信心。如我班学生杨晓鲁,洪鸣,成绩较差,但他们很喜欢乱发言,讲话,我就抓住这一点,上课经常提问他们,回答错 了,也不批评,帮他们及时纠正,要他们说完整话。经过这一学期的学习,争取成绩有所提高,至少先及格吧。
三、实施措施
1、 教师要钻研大纲和教材,明确教学的内容和目标,抓住重点、难点,对教材进行合理的编排和重新组织。作为年轻教师,应多听其他同年级老师的数学课,了解这些 有经验老师的授课特点、授课方法,将它融入到自己的教学中去。开学初,要了解学生掌握知识的程度和学生的学习习惯。在摸清知识体系,学生状况的前提下,根 据高一教材和大纲,制订出相当的教学计划,确定应采取的教学方法,做到有的放矢。
2、 新高一,新知识,入门时要放慢进度,降低难度,注意教学内容和方法的衔接。要加强基本概念、基础知识的教学。教学时注意形象、直观。如讲空间直线与平面时 可多举一些生活中的直观例子,并时常将一些亲手做的正方体,长方体,四面体,棱锥等实物模型展示在大家面前。此外,立体几何又是一个可以很好的利用多媒体 进行教学的内容,要多制作一些形象,直观,有动画效果的课件,能有效的帮助学生去理解,加快培养他们的空间想象能力。
3、要增加学生回答问题和到黑板上演练的次数,从而及时发现问题,解决问题,章节考试难度不能大,以考查双基为主,提高学生的可接受性,增强学生学习信心,让学生逐步适应高中数学的正常教学。
4、 严格要求,打好基础。开学第一节课,教师就应对学习的五大环节提出具体、可行要求。如:作业的规范化,独立完成,订正错题等等。对学生在学习上存在的弊 病,应限期改正。严格要求贵在持之以恒,贯穿在学生学习的全过程,成为学生的习惯。考试的密度要增加,如第一章可分为三块进行教学,每讲完一块都要复习、 测验及格率不到70%应重新复习、测验。实践表明,教好课与严要求,是提高教学质量的主要环节。
5、 指导学生改进学习方法和习惯。良好的学习方法和习惯,不但是高中阶段学习上的需要,还会使学生受益终生。但好的学习方法和习惯,一方面需教师的指导,另一 方面也靠老师的强求。教师应向学生介绍立体几何的特点,进行学习方法的专题讲座,帮助学生制订学习计划。这里,重点是会听课和合理安排时间。听课时要动 脑、动笔、动口,做到笔不离手。教师应有针对性地向学生推荐课外辅导书,以扩大知识面。提倡学生进行章节总结,把知识串成线,归成类,做到书由厚读薄,又 由薄变厚。
6、 教辅书,一本足矣,不必多多益善,最重要的是用好每一本书,真正让它起到辅助学习的作用。对于学有余力的同学,老师可适当补充一些题目,而基础比较薄弱 的,可以选择一些加强巩固的练习题。反正对于作业,老师要及时的进行讲评和分析,对于错误多的学生要进行个别辅导。然后,整个年级再利用周日的文博业余学 校进行分层培优补差工作。
四、保障措施和可行性
1、有扎实的业务知识,加上去年一年的工作经历,掌握了一些教学的方法,摸到了一点教学的门路。当然我还是一个新手,特别是高二数学也是第一次教,没什么经验,仍然要边教边学,不断吸收新的信息,学人之长,补己之短。
2、课堂教学只占我工作的很小部分时间,除上课和批改作业外,可以进行一些教研组,备课组的讨论,进行集体备课、说课。余下时间可以看看数学杂志,做课件,做题目,给学生答疑等等。
3、单元练习卷有备课组内老师共同命题的练习卷。
4、除了单元练习(45分钟)在课内解决外,每章的测验由年级组统一安排。
5、利用早自修,午休课,下午的自习课和双休日补课进行补缺补差,分析作业和题目,不让问题积压起来。
6、年级组的支持和各任课老师的顶力配合,使得教学工作可以顺利的开展下去。
五、总目标达成度与现阶段教学目标达成度的相关分析:
由 于本人是第一次任教高一数学,对教材的驾驭和处理还相当不熟悉,上课时有时还不能很连贯,在工作中还需请教请教老教师,尽快的掌握上课的技能技巧,抓住重 点、难点,合理地完成教学设计和出色地完成教学任务。相信在自己不断的努力下,认真负责,从每一个小的环节做起,关心好每一位学生的学习,抓两头,促中 间,肯定每一位都有进步。
六、课堂教学改革与创新、信息技术的应用与整合:
课改要求我们在课堂教学中要充分发挥学生的主体作用,让学生主动地去进行自主式学习,发现式学习,研究式学习,在不断地产生问题,解决问题的过程中提高自己的分析能力,自学能力。学生不在是以前课堂上的听众了,只是被动地接受知识,而是转变成了与老 师进行交互式的学习。并且,随着信息技术的飞速发展,电脑、投影仪和实物幻灯机已经进入了我们的教室,它们已经与我们的教学密不可分了。信息技术的应用已 成为课堂教学改革的推进剂,应用的好可以为你的教学增色不少。但是,信息技术始终是课堂教学的辅助工具,它的产生并不是说黑板,粉笔就不要了,只有两者合 理地整合,才能发挥最大的效果。
高一数学中的立体几何有很多地方可以借助于信息技术,将空间中的图形,变化利用电脑动画完美、形象、直观地展示出来,对学生学习立体几何有很大的帮助。因此,我本人打算自学一些软件,几何画板","FLASH动画制作","3DMAX",将它们应用到课件制作中去,助课堂教学一臂之力。