比的意义教学设计

时间:
分享

比的意义教学设计

  作为一名为他人授业解惑的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以让教学工作更加有效地进行。那要怎么写好教学设计呢?以下是小编帮大家整理的比的意义教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

比的意义教学设计

比的意义教学设计1

  小数的意义

  第一课时

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。

  教学目标:

  1让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。

  2通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义。

  4感受数学与生活的紧密联系,体会小数在日常生活中的作用。

  教学重点:

  结合现实情境,认识小数及小数的计数单位。

  教学难点:

  理解小数的意义及十进关系。

  教学准备:

  米尺、直尺等。

  教学过程:

  一、引入新知

  1量一量黑板的长,课桌长、高

  这些数是不是都是整米数?

  教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。

  2回忆、练习

  1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m

  教师:关于小数,同学们还想知道什么?

  板书课题:小数的意义

  二、探索新知

  1教学例1

  (1)填一填,说一说。

  (出示例1第1个图)

  ①此图用分数、小数该怎样表示?你是怎样想的?

  说一说:07表示把一个正方形平均分成()份,取其中()份。

  07里面有()个0.1。

  ②像0.1,0.3,0.5,0.7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。

  (2)同理说一说。(后面两幅图)

  ①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?

  ②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?

  2教学例2

  (认识三位小数)

  (1)看一看,填一填。

  ①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。

  (出示图)学生填分数和用小数表示。

  1mm=()1000m=()m;146mm=()1000m=()m②把一个正方体平均分成1000份。

  (第70页例2图)其中1份、25份,107份用分数和小数怎样表示?

  (2)说一说0.025,0.107分别表示什么以及它们的组成。

  (3)归纳:表示千分之几写成几位小数?三位小数表示几分之几?

  3讨论、归纳小数的`意义

  学生讨论:什么是小数?小数的计数单位有哪些?

  归纳:像0.7,0.45,0.025,0.25,0.107……这样表示十分之几、百分之几、千分之几……的数叫小数。0.1,0.01,0.001……就是小数的计数单位。每相邻两个计数单位间的进率是“10”。

  学生自学数位顺序表。

  三、课堂活动

  完成课堂活动第1,3,4题。

  先学生独立完成,集体评议,让学生说说是怎样想的?

  四、课堂小结

  本节课学会了什么?还有什么困难?

  板书设计:

  小数的意义

  一位小数表示十分之几。

  两位小数表示百分之几。

  三位小数表示千分之几。

  每相邻两个计数单位间的进率是“10”。

  0.1,0.01,0.001……就是小数的计数单位。

比的意义教学设计2

  教学目标:

  1、通过观察进一步理解等分活动与除法之间的关系,进一步体验除法运算与生活实际的密切联系。

  2、结合具体情境,体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。

  3、培养学生分析、解决问题的能力,养成良好的学习习惯。

  教学重难点:

  体会“倍”的含义,知道求一个数的几倍是多少用乘法计算。

  教学手段:

  多媒体课件。

  教学过程:

  一、复习准备,为新课铺垫。

  1、小朋友们,喜欢去麦当劳、肯德基吗?吃过薯条、汉堡包吗?

  2、今天,老师就和大家一起去哪里看看有哪些好吃的东西,好不好?

  3、多媒体出示即时练习,指名回答,并说明理由。

  二、创设情境,激趣导入。

  1、小朋友,在我们的学习生活中,文具的用处可大了!哪位小朋友能说说,你有哪些文具?

  2、原来你们有这么多的文具呀!袋鼠妈妈听了可真羡慕呀!于是她决定要在森林里开一家文具店,让小动物们和小朋友一样,都能买到各种各样的文具。我们一起去看看,好吗?

  3、出示课题:文具店。

  二、自主探索,研究新知。

  1、出示教学目标,了解今天的学习任务。

  2、了解图意,获取信息。

  (1)我们一起看看小动物们都买了什么文具呢?

  小兔买了一支笔,花了2元钱。

  大灰狼买了一个文具盒。

  小牛买了3支铅笔。

  (2)们说得真不错,除了这些以外,你还知道什么?

  大灰狼花的钱是小兔的4倍。

  3、小组交流,解决问题。

  (1)你真是一个认真观察的'好孩子!现在大灰狼想考考大家,你们知道他们买文具花了多少钱吗?请小朋友在组里互相说一说,然后完成书上的“填一填”。

  (2)学生分组交流,解决问题。

  (3)师生共同探讨:你是怎么想的,说说你的理由。

  (4)小朋友说得真好!大灰狼和小牛为你们喝彩。谁和他们一样棒,也来说一说。

  (5)小朋友们说得太好了!香蕉和小鸡想请你们来帮它们解决问题,你们愿意帮助它们吗?

  (6)小结:求一个数的几倍是多少用乘法计算。

  4、画一画。

  同学们通过了大灰狼和小牛的考验,现在老师想考考你们,愿意接受挑战吗?

  请小朋友完成课本48页“画一画”。

  (1)学生独立思考。

  (2)让学生用学画一画。

  (3)指名回答。

  (4)你会用什么是什么的几倍说一句话吗?

  5、经过刚才的学习,你能解决下面的问题吗?

  (1)5的2倍是多少?

  (2)3的9倍是多少?

  (3)6的5倍是多少?

  (4)4的8倍是多少?

  三、巩固应用,拓展创新。

  1、练一练1、2。

  (1)袋鼠妈妈看见小朋友这么聪明,也带来了四个问题想考考大家,我们一起来解决,好吗?

  (2)学生独立完成,师生交流。

  2、练一练3。

  (1)小朋友们,喜欢去旅游吗?

  (2)你们去旅游都离不开什么交通工具?

  (3)今天老师给同学们带来了3辆车,你能说出是什么车吗?

  (4)从图中你得到了哪些数学信息?

  (5)你知道大客车上有多少位乘客吗?小轿车上呢?请小朋友们讨论一下,也可以用小棒或圆摆一摆。

  四、评价体验。

  今天,我们班的小朋友真聪明,不仅解决了小动物提出的各种问题,而且最难的思考题都没有难住你们!现在,谁来说说你有什么收获?

  五、板书设计:

  文具店

  老黄牛花的6元钱 2×3=6(元)

  大灰狼花的8元钱 2×4=8(元)

比的意义教学设计3

  教学目标:

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义。

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

  (三)培养学生的观察、分析、推理能力。

  教学重点和难点:

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及相邻单位间的进率,既是本课的重点,也是本课的难点.

  教学过程:

  一、小数的产生。

  1、谈话导入

  问:在三年级时我们初步认识了小数,你能说一个小数吗?

  (根据学生的回答,选一部分板书)

  问:你还知道小数的哪些知识?

  2、那小数是怎样产生的呢?(出示课件)

  ①先出示课件,让学生观察,哪些能用整数表示?哪些得不到整数的结果?

  ②小结:在测量时、计算时及物体的单价,有的能用整数表示,有的得不到整数的结果。像这样得不到整数结果的例子在生活和学习中有很多,聪明的人们于是想到了用分数、小数来表示,于是小数便产生了。(板书:小数产生)

  二、小数的意义。

  1、认识一位小数

  师: 0.1米 还可以怎么表示?

  生1:用分数表示是1/10米

  生2: 1分米

  师:你是怎么想的?

  生:把 1米 平均分成10份,每一份是1分米,用分数表示是1/10米,用小数表示是 0.1米 。

  师: 0.3米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)

  师: 0.8米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)

  师:像0.1、0.3、0.8……这样的小数,小数点后面只有一位数,这样的小数叫一位小数。

  (板书:一位小数)

  2、认识两位小数

  师: 0.01米 还可以怎么表示?

  生1:用分数表示是1/100米

  生2: 1厘米

  师:你是怎么想的?

  生:把 1米 平均分成100份,每一份是 1厘米 ,用分数表示是1/100米,用小数表示是 0.01米 。

  师: 0.05米 是几厘米?用分数表示是多少米?(生略)

  师: 0.09米 是几厘米?用分数表示是多少米?(生略)

  师:像0.01、0.05、0.09……这样的小数,小数点后面有两位数,这样的小数叫(两位小数)。

  (板书:两位小数)

  3、认识三位小数

  师: 0.001米 还可以怎么表示?

  生1:用分数表示是1/100米

  生2: 1毫米

  师:你是怎么想的?

  生:把 1米 平均分成1000份,每一份是 1毫米 ,用分数表示是1/1000米,用分数表示是1/1000米。

  师: 0.007米 是几毫米?用分数表示是多少米?(生略)

  师: 0.012米 是几豪米?用分数表示是多少米?(生略)

  师:像0.001、0.007、0.012这样的小数,小数点后面有三位数,这样的小数叫(三位小数)。(板书:三位小数)

  师:分母是几的分数能写成四位小数?(1000)

  分母是几的分数能写成五位小数?(10000)

  师:依次类推(板书:......)

  4、概括小数的意义

  师:(结合板书)这些都是同学们刚刚写出的分数和小数,不同的分数可以写成相对应的小数,例如:1/10可以写成0.1;

  5/100可以写成0.05; 12/1000可以写成0.012。

  那么分数和小数之间的这种联系,谁能用自己的话来说一说呢?

  师:下面分小组说一说你们各自的想法。

  (汇报讨论结果。)

  组1:分母是10、100、1000的分数可以用小数来表示。

  组2:十分之几是一位小数,百分之几是两位小数,千分之几是三位小数……。

  组3:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。

  组4:分母是10、100、1000的分数可以用小数来表示,比如说十分之几可以用一位小数来表示,百分之几可以用两位小数表示,千分之几可以用三位小数表示……。

  小结:我们一起来看板书,刚刚你们已经说到了分母是10的分数可以用一位小数来表示,分母是100的分数可以用两位小数来表示,分母是1000的分数可以用三位小数来表示,用一句话概括就是——分母是10、100、1000……的'分数可以用小数表示。

  这就是。(板书:小数的意义)

  5、认识小数的计数单位。

  师:0.3里面有( )个0.1 0.8里面有( )个 0.1

  生1:0.3里面有( 3 )个0.1

  生2:0.8里面有( 8)个

  师:像0.3、0.8这样的一位小数都是由许多个 0.1 组成的,我们就说 0.1 是一位小数的计数单位,用分数表示是十分之一。

  师:那么你们猜一猜,两位小数的计数单位是什么?

  生: 0.01 是两位小数的计数单位,用分数表示是百分之一。

  师:那三位小数的计数单位是(? )

  生:0.001(千分之一)

  师:那四位小数的计数单位是( ?)

  生:0.0001(万分之一)

  师:依次类推(板书:......)

  6、认识进率

  (结合板书)一位小数的计数单位是0.1,两位小数的计数单位是0.01,三位小数的计数单位是0.001,那0.1里面0.1有( )个0.01

  0.1里面有( )个0.001 (课件出示)

  生:0.1里面有( 10)个0.01

  0.01里面有( 10 )个0.001

  师:为什么0.1里面有( 10)个0.01,0.01里面有( 10 )个0.001,同学们可以结合板书去思考?(四人一小组进行讨论)

  生:讨论

  生:汇报

  生1: 0.1米 =1分米 0.01米 = 1厘米 1分米= 10厘米

  所以0.1里面0.1有( 10 )个0.01 ......

  师:0.1里面有( 10)个0.01,0.01里面有( 10 )个0.001 ,依次类推(板书:......)

  用一句话可以怎么概括?

  师:(课件出示) 每相邻两个计数单位之间的进率是10

  师:(结合板书)0.1里面有( 10)个0.01,0.01里面有( 10 )个0.001 ,那0.1里面有( )个0.001 ?

  生:0.1里面有( )个0.001 ?

  师:你们是怎么想的?生:......

  四、巩固练习。

  师:从上课开始到现在,我就发现同学们的推理能力特别强,那剩下的时间我们就一起去闯智慧关,有没有信心,接受挑战?(有)

  师:请看大屏幕,第一关(课件出示)

  1、填一填(书51页做一做)

  2、哪两只手套是一副?用线连一连。(书55页第2题)

  第二关

  3、在( )里可以填几

  ( )个0.01是0.1 0.8里面有( )个0.1

  0.35里面有( )个0.1和( )个0.01组成的

  0.2里面有( )个0.1,有( )个0.01,有( ), 个0.02

  4、想一想

  1元4角2分=( )元 2.56元=( )元( )角( )分

  35厘米=( )米=( )分米 0.68米 =( )分米=( )厘米

  第三关

  5、在括号里填上适当的分数和小数

  五、课堂小结。

  这一节课我和小朋友合作得非常成功,我相信每一个同学都有很多的收获,谁先来说一说?

比的意义教学设计4

  教学目标

  1、进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题。

  2、提高学生计算能力和估算能力。

  3、培养学生认真计算、自觉检验的好习惯。

  教学重点

  正确、熟练地计算较复杂的小数乘法。

  教学难点

  根据小数乘法的意义正确判断积与被乘数的大小关系。

  教学过程

  一、检查复习

  (一)口算

  0.9×6

  7×0.08

  1.87×0

  0.3×0.6

  0.24×2

  1.4×0.3

  1.6×5

  4×0.25

  60×0.5

  7.8×1

  (二)说出下面各算式表示的意义

  2.4×0.8

  1.36×4

  2.58×0.2

  二、指导探索

  (一)教学例3 0.056×0.15

  1、学生独立计算,指名板演。

  2、指名说一说计算过程。

  教师提问:乘得的积的小数位数不够时,该怎么办?

  3、指导学生验算方法

  教师提问:怎样检验小数乘法计算是否正确?

  (运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)

  (二)教学例4

  一个奶牛场八月份产奶18.5吨。九月份的'产量是八月份的2.4倍。九月份产奶多少吨?

  1、独立解答、

  2、教师提问:

  (1)你是根据什么列式的?(一倍数×倍数=几倍数)

  (2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)

  3、比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?

  4、练习:不计算,说明下面各算式中积与被乘数的关系、

  10.8×0.9

  2.4×1.8

  50×0.36

  0.48×0.75

  讨论:在什么情况下,积小于第一个因数?

  在什么情况下,积等于第一个因数?

  在什么情况下,积大于第一个因数?

  5、小结:当第二个因数比1小时,积比第一个因数(零除外)小;

  当第二个因数等于1时,积等于第一个因数(零除外);

  当第二个因数比1大时,积比第一个因数(零除外)大;

  6、练习:不计算,判断下面各题的结果是否正确、

  0.72×0.15=1.08 0.36×1.8=0.648

  三、质疑小结

  (一)今天你都有什么收获?

  (二)对于今天的学习还有什么问题?

  教学设计点评

  教学设计中充分利用本课的内容,发散学生的思维,提高学生的各种能力。重视学生全面参与教学过程,大胆让学生尝试、讨论,通过对比积与被乘数的大小关系,帮助学生形成技能技巧,提高计算能力。

比的意义教学设计5

  教学目标:

  1、在现实情境中认识百分数,理解百分数的意义。

  2、会正确读、写百分数。

  3、感受百分数在现实生活中的价值,增强学好数学的信心和乐趣。

  学习目标:

  1、能说出百分数表示的具体含义。

  2、理解百分数的意义。

  3、会正确的读写百分数。

  教学重点:百分数的意义和读、写法

  教学难点:百分数与分数的联系和区别。

  教学准备:多媒体课件

  教学过程:

  一、创设情境,激发探究欲望:

  师:课下布置了一项任务,请同学们查找百分数的资料了,你们找到了吗?谁来说一说是在哪儿找到的。

  生1:我是从报纸上找到的。……较年初增长15.5%…

  师:这位同学找到这么多的百分数。老师这里有一组数据,哪位同学读一读。

  教师出示:课件出示。

  指名学生读

  师:同学们能在生活中找到这么多的百分数,说明了什么?

  生:说明百分数在生活中应用的非常普遍。

  师:我们今天就来共同研究百分数。

  (板书:百分数)

  师:通过刚才交流大家收集到的资料,老师发现同学们虽然还没有学过百分数,但已经会读百分数了。除了会读百分数以外,你们还想知道有关百分数的`哪些知识呢?

  生1:我还想知道百分数怎样写。

  生2:百分数和小数怎样互化?

  生3:百分数和分数有什么区别?

  师:这几位同学都跟以前的知识进行了联系,想法非常好。

  生4:我想知道百分数的意义是什么?

  师:知道了百分数的意义,我们是不是应该了解一下百分数用途和好处呀?

  教师板书:百分数的意义、用途、好处、与分数的异同。

  二、尝试探究,解决问题:

  1、自学课本,解决问题。

  师:请同学们自己看书P77——78的内容,边看、边画、边想,通过看书自学,看你能了解到哪些有关百分数的知识?

  学生自学课本。汇报交流:

  师:通过自学,你们解决了哪个问题??

  生1:我解决了百分数的意义,百分数表示一个数是另一个数的百分之几,百分数也叫百分率或者百分比。

  指名学生再说一说,学生齐读百分数的意义。

  教师板书:表示一个数是另一个数的百分之几,又叫百分率或百分比。

  2、举例验证,解决问题

  A:课件出示课本上的例子并说明含义。

  B:师老师去超市买了这两种饮料回来,让你选,你喜欢喝哪种?为什么?

  出示:课件。

  生:我会选农夫果园,因为虽然它的价格比较高,但是它的果汁含量也高。

  师:那果汁含量表示的是什么?

  生:就是纯果汁占这瓶饮料的百分之几。

  师:也就是说,我们把整盒饮料看作是100份,果汁就是其中的30份,也就是果汁占整瓶饮料的30%。

  生:就是我们把整瓶饮料看作100份,果汁是其中的30份,所以果汁占整瓶饮料的30%。

  师:果汁含量10%表示什么意思?

  生:把整瓶饮料看成100份,果汁就是这100份中的10份,也就是整瓶饮料的10%。

  C:师:我还有两件毛衫,一件羊毛含量95.3%,一件羊毛含量32%,现在这个天气你建议我穿哪件?

  教师出示:

  生:我觉得应该穿第一件,因为它的羊毛含量高。

  师:羊毛含量95.3%表示什么意思?

  生:表示把整件衣服看成100份,里面的羊毛占95.3份,羊毛就占整件衣服的95.3%。

  师:那32%又表示什么?

  生:把整件衣服看作100份,羊毛就是其中的32份,所以羊毛就占整件衣服的32%。

  师:同学们真了不起,已经会运用我们所学的百分数来分析实际问题了。

  3、联系实际,教学百分数的写法,解决百分数与分数的区别

  教师出示:

  师:老师这儿有三杯糖水,你在这幅图上能看出哪杯糖水甜?

  生1:我感觉应该是第三杯,因为第三杯颜色比较浓,第二杯明显的加了不少水。

  生2:我觉得第一杯比较浓。

  师:只是在猜哪一杯甜,要想真正比较出来是不是需要数据呀?

  师:(出示1、2、3号杯,第一杯糖13克,糖水25克;第二杯糖27克,糖水50克;第三杯糖11克,糖水20克)现在我给大家提供一组数据,请你们四人小组研究研究,把你们比较的过程写下来。

  四人小组自主探究,汇报交流。

  生1:第一杯糖水减去糖得出水是12克,第二杯,水23克,第三杯,水9克,因为水越少就越甜,9﹤12﹤23,所以第三杯甜。

  生2:我先化成分数,13/25、27/50、11/20,也就是比较一下这三个分数的大小就可以了。13/25=52/100、27/50=54/100、11/20=55/100,所以第三杯水最甜。

  师:还有其他方案吗?

  生3:把糖水变成100克,第一杯蜜就是52克,第二杯糖就是54克,第三杯就是55克,这样我们就可以看出,一号杯糖占糖水的52/100,二号杯糖占糖水的54/100,三号杯糖占糖水的55/100。所以三号杯甜。

  师:这个小组的方案和刚才那个小组的方案一样吗?是不是都在求糖占糖水的几分之几?

  师:大家同意哪一种方法呢?(大部分同意第二种方法,但解释不清第一种方法的症结)

  师:第一种方案的问题出在哪儿呢?(学生陷入了沉默)

  教师举例:如果有第四杯糖水,其中糖1克,糖水2克,按照生1的想法,2-1=1,和刚才三杯相比,是不是这杯更甜呢?大家来看,其他三杯糖都超过了糖水的一半,第四杯糖正好是糖水的一半,所以第四杯不是最甜的。看来解决这类问题时不能只是单纯的求出差就行了,我们可以像刚才那些同学说的,要求糖占糖水的几分之几。

比的意义教学设计6

  教学目标:

  1、进一步认识分数,理解分数的意义。

  2、认识分数单位,感受到单位的价值。

  3、体会到数学好玩,进一步喜欢数学。

  教学过程:

  一、师生谈话,调节气氛

  二、简单提问,找准学生知识起点

  师:这儿有一个关于分数的问题,一起来看看,说是猪八戒吃西瓜,他把一个西瓜平均分成4份,吃了3份,怎么用分数表示猪八戒吃的西瓜?

  生:

  师:能说说是怎么想的吗?

  生:平均分成4份,取其中的3份就是

  师:那么,还有这样一个问题:孙悟空拔出一根毫毛,变成6只猴子,3只公的,3只母的,你想到了什么分数?

  生:

  师:说说怎么想的?这个分数表示什么?

  生:表示公猴或母猴占猴子总数的六分之三

  师:还想到了什么分数?

  生:

  师:说说是怎么想的。

  ……

  三、探究新知

  (一)、大头儿子的难题----引出单位

  (课件播放动画片:小头爸爸出去买沙发套,到了商店发现忘了测量沙发的长度,于是打电话让大头儿子测量一下,可是家中没有尺子)

  师:这可怎么办?你有什么好办法吗?

  生:可以找个东西代替尺子测量。

  师:一起来看看大头儿子是怎么解决的。

  (课件继续播放故事:大头儿子想起可以找个东西代替尺子测量,于是他问爸爸戴领带了没有,爸爸回答戴了,于是他从家中找出一条爸爸的领带进行测量,他先将领带对折,发现不行,再对折,还是不行,又对折了一次,折出这很后放在沙发前)

  师:你知道大头儿子将领带平均分成了几份吗?

  生:8份。

  师:那你知道沙发的长度了吗?

  生:知道。

  师:请大家独立把答案写在作业本上。

  (指名交流结果)

  生:

  师:为什么是?

  生:大头儿子把领带平均分成了8份,一份就是,沙发的长度占其中的7份,也就是有7个,所以表示为

  师:爸爸叫大头儿子测量沙发长度,为什么大头儿子首先想得到的是找尺子

  生:因为尺子有单位,比较容易看出长度

  师:那大头儿子没有尺子上的单位,又怎么测量出了沙发长度的呢?

  生:将领带平均分成8份,就有了这个单位,然后数数有几个这样的单位就可以了。

  师:原来分数就是这样产生的,今天我们就进一步来认识分数。

  (板书课题)

  师:分数的再认识究竟是认识什么?你对分数有哪些问题?

  生1:分数是什么?

  生2:为什么要认识分数?

  生3:怎么确定一个分数?

  师:现在我们就带着这些问题一起来认识分数。

  师:大头儿子在测量沙发长度是产生了这个分数,那这个分数是怎么产生的?

  生:先把领带平均分成8分,这样就有了八分之一这个分数单位,然后再数数有几个这样的单位就行了。

  师:也就是说,首先要创造一个单位,这在测量中很重要,那么如果要量一个教室的长要用什么单位?

  生:米。

  师:量一枝铅笔的长用什么做单位?

  生:厘米。

  师:为什么你会做这样的选择?

  生:因为测量较长的物体就会选择较大的长度单位,测量较短的物体就选择较短的单位

  师:正是这样,不光是测量长度,测量面子、重量等都是这样的。也就是说不同的尺子就是单位不同。大头儿子用领带来测量沙发的`长度,他创造了一把尺子,其实就是创造了一个新的单位。

  师:一起来看一组分数,你知道他的单位吗?

  (出示一组分数,指名说出分数单位,教室板书)

  师:观察一下这些分数单位,你发现了什么?

  生1:所有的分数单位分子都是1。

  生2:分数单位与原分数比较,分母不变,分子都变成了1。

  师:是的,像这样分子是1的分数又叫分数单位。你知道为什么大头儿子在测量沙发时要创造八分之一这个单位,而不是创造二分之一、四分之一这样的分数单位呢?

  生1:因为只有创造八分之一这个单位才好数。

  生2:如果是二分之一、四分之一这样的分数单位,就数不出有几个这样的整单位。

  师:原来要根据实际情况来确定单位呀!

  师:古埃及人在进行分数运算时,只使用分子是1的分数,因此这种分数也叫做埃及分数。埃及分数,曾经是一个被人瞧不起的,古老的课题,但它隐含着十分丰富的内容,许多新奇的迷等待着人们去揭开。

  (二)、大臣们的难题-----规定单位

  (课件演示动画过程,古代君臣一行几人正在花园中赏景,皇帝一时心血来潮,询问大臣们眼前的池塘中有几桶水,并限时回答否则重罚,这下可忙坏了大臣们,大家七手八脚的拿桶来测量,可怎么也搞不清楚,这时旁边的一个小孩哈哈大笑说:这么简单的问题还要这样大动干戈吗?我知道)

比的意义教学设计7

  教学目标:

  1、使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义。

  2.使学生在理解分数意义的过程中,进一步培养分析、比较、综合、抽象与概括的能力,感受分数与生活的联系,增强数学学习的信心。

  教学重点:

  理解分数的意义,认识分数单位。

  教学难点:

  抽象出单位“1”的概念,认识分数单位。

  教学准备:

  (1)学生课前查找资料,了解分数的产生;

  (2)学生课前收集生活中常用的分数;

  (3)学生活动材料。长方形纸、正方形纸、圆形纸、苹果等各种实物模型若干个,星星图,尺子,彩笔等。

  教学过程:

  一、感知1/4

  1、回忆旧知(课件出示1/4)

  2、我们已经知道了分数的哪些知识?(板书课题:分数的意义)

  3、利用桌上的材料表示1/4。

  [让学生自选素材表示分数,有利于激活学生对已有知识的回忆,使学生感受到被平均分的对象是广泛的,从而为建立单位“1”的概念积累丰富的感知。]

  2、学生独立操作,教师巡视。

  3、展示汇报

  小结:一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

  [这里把“自然数1”作为建立出单位“1”的台阶,一方面体现了由具体到抽象的过程,只有以自然数1为标准,分数的大小比较、四则运算才能实施;另一方面,这样做也是由数概念扩展的规则所决定的,使学生充分感受分数的产生是整数发展的.必然结果。]

  (二)理解2/3

  组织学生操作体会2/3的意义。

  我们一起来解决。要求每两人一组,选择桌上的材料表示2/3,然后组内交流。

  2、学生自由组合,利用桌上的材料操作交流,教师巡视。

  3、集体反馈。

  [让学生通过动手操作,说说分别是把什么看作单位“1”,把单位“1”平均分成了几份,表示这样的几份,由此引导学生概括出分数的意义。]

  (三)深化1/□

  1、组织学生利用星星图探究它的1/□

  师:你们还想研究别的分数吗?(课件出示1/□)这个分数好特别!特别在哪儿?(分母没有数)它读作什么?每个小组都有一些这样的图(课件演示12颗星星),请你们涂上颜色来表示这些的几分之一。大家先思考,再小组分工合作,看看可以有多少中不同的方法来表示。

  2、学生分小组思考、操作交流,教师巡视,引导学生用不同的方式表示。

  3、反馈

  (学生一边展示,一边叙述是怎样表示几分之一的)

  教师把学生汇报的情况汇总在一起。(课件演示)

  观察这组图形和分数,你发现了什么?

  生1:我发现了都是把12颗星星平均分成几份;

  生2:我发现了分子都是“1”,也就是都只取其中的一份;

  生3:我发现了分母越大,每份的星星数量就越少;

  生4:我发现了分母都是12的约数。

  师:同学们真了不起,发现了这么多的知识!

  把单位“1”平均分成若干份,表示其中的一份就是分数单位。

  [课件演示多种方式给星星图涂色,知道平均分的份数不同,就得到不同的分数单位。了解分数单位实际上是单位“1”的若干分之一。]

  (四)理解□/□

  1、组织学生探讨□/□的意义

  师:(课件出示□/□)学生默读操作要求。

  2、学生采用小组活动的形式,教师巡视指导。

  3、汇报展示。

  4、学生讨论、概括分数的意义

  师:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数。

  5、联系生活举例

  (五)小结与质疑

  1、师;(课件演示,图略)从图中你可以了解到哪些信息?

  2、师:你学会了什么?还有什么不明白的地方?

比的意义教学设计8

  教学内容:

  人教版《义务教育课程标准实验教科书数学》三年级下册第六单元《面积的意义》。

  认知目标:

  结合实例使学生理解面积的意义。

  能力目标:

  培养学生观察、比较、操作、概括等能力,发展学生的空间观念。

  情感目标:

  通过自主学习、动手操作,感受数学的价值以及在生活中的应用,获得成功的体验以及用数学的乐趣。

  教学重点:

  理解面积的意义。

  教学难点:

  学习比较面积大小的方法。

  教具准备:

  多媒体课件。

  学具准备:

  装有各种平面图形的信封①号和②号,内有大小不同的正方形、长方形、圆形学具若干。

  教学过程:

  一、创设情境,激趣导入。

  同学们,有个问题老师想来想去都想不明白,你们想帮帮我吗?(想)问题是这样的:我到玻璃店为两个大小为12厘米×9厘米和18厘米×6厘米的长方形(多媒体演示)相框安装玻璃,店老板说每块玻璃都要付10元,你们觉得这样收费合理吗?(学生说)看来,各人意见都不同,先让我们学习有关面积(板书)的知识,再来解决问题吧!

  二、合作交流,动手探新。

  1.探索面积的含义

  A.大家都知道,像粉笔盒、电脑等物品都是物体,而物体都有它们的表面(师示范摸粉笔盒的面),现在请摸一摸你的课桌面和数学书封面,感觉怎么样?有什么发现呢?

  B.请看大屏幕,我发现了讲台的面比粉笔盒的面大(师边讲边操作),现在请打开书本第70页,通过看图同位继续找发现。

  C.学生汇报:

  如:我发现黑板的面比电视机的`屏幕大。

  我发现三角形比长方形小……(学生一边点击一边说,师板书)

  D.小结:

  刚才,通过大家的观察发现,我知道了像黑板、电视机、数学书等物体,它们的面称为物体的表面(板书),三角形、长方形等图形我们称为封闭图形(板书)。还知道它们的面是有大有小的,黑板面的大小,三角形的大小,就是它们的面积,现在你能用自己的话说一说什么是面积吗?

  E.得出面积定义:

  ①学生讲

  ②师完成板书:或、的在小、就是它们的面积。

  ③在书本画出概念并找出重点字词。

  ④齐读。

  ⑤同桌互说面积的定义。

  F.举身边的面积:

  同学们真了不起,通过自己动手、动脑成功认识了“面积”这个好朋友,表扬你自己(棒棒,我真棒)。刚才大家通过拍手表扬了自己,那么手掌表面的大小就是…(手掌的面积)。现在老师和你们玩一个“寻宝游戏”。看面积躲在我们身边的什么地方?(学生汇报:笔盒表面的大小就是它的面积……)

  2.比较面积的大小

  A.直接比较

  ①同学们真棒,已经知道物体的表面或封闭图形的大小,就是它们的面积。那么,有信心比较出面积的大小吗?请拿出1号信封,四人小组讨论谁的面积大,并给自己比较的方法起个名字。

  ②学生汇报。

  A观察法

  B重叠法

  C?

  由学生引起矛盾,通过观察法和重叠法都比较不出它们面积的大小

  生:老师你有什么好办法?

  B.间接比较

  ①师:这样吧,老师有个建议,既然不能直接比较,我们借助一些工具帮帮忙吧。请拿出2号信封,选择自己喜欢的图形摆一摆,看能否比较出它们面积的大小。(学生四人小组合作,教师巡堂指导。)

  ②学生汇报,得出数方格法。

  ③小结。

  第×组的同学可以比较出两个长方形面积的大小,是因为他们采用了统一的标准,所以比较两个图形面积的大小,要用统一的面积单位来测量。(板书)

  3.质疑问难:

  ①同学们,其实刚才比较的这组图形的面积刚好是我要配的玻璃的大小,现在你知道为什么要付同样多的钱吗?

  ②还有什么不懂的地方?

  生提。

  师提:面积定义中,物体的表面与封闭物体之间为什么用“或”不用“和”连接呢?

  “或”是可以是物体,也可以是封闭图形,“和”是两种情况都有才行。

  三、精心设练,乐中用新。

  1.哪个图形的面积大,哪个图形的面积小?

  ①猜一猜,谁的面积大?谁的面积小?(多媒体)

  ②验证:出示格子(每个□的大小一样),学生数格子的数目,得出结果。

  2.比较海南省、广东省、江西省、四川省的版图

  问:哪个省的面积大,哪个省的面积小?

  3.小小设计师

比的意义教学设计9

  教学目标

  1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

  2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

  3.培养良好的学习习惯,提高学生的探究、归纳比较、推理能力。

  教学重点理解小数的意义。

  教学过程

  一、交流信息,引入课题

  师:课前布置学生收集一些与小数有关的资料,谁愿意读给大家听听?谈谈你了解到了什么,又想到些什么?

  小结:刚才出现的这些数都是小数,它们表示什么意义,应该怎样正确地读和写呢,;今天这节课我们一起来学习。(板书课题:小数的意义和读写方法)

  【设计意图:学生的知识起点是三年级时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情】

  二、教学例1

  初步感知

  师:为了便于研究,老师课前也收集了一些与小数有关的材料。

  1.出示例1三幅图。图上这些数都是小数,表示物品的价钱。会读吗?如果你到商店去买这些物品,该怎样付钱呢?

  生1:元就付3角。

  师:很好,你会把元转化成角来考虑。那元和元呢?

  生2:元就是5分。

  生3:元就是4角8分。

  帅:对,也可以说成48分。

  2.师:把3角写成用元做单位的分数,是多少呢?

  生:3角=3/10元。(一元=10角,1角就是1/10元,3角里面有3个1/10,是3/10元)

  师:3角=3/10元,也可以写成元,读作零点三元。(板书)

  师:5分、48分也写成用元做单位的分数,你们会吗?同桌先讨论一下,再回答。

  生:5分=5/100元,48分=48/100元(1元=100分,每份是1/100元,5分有5个1/100,就是了5/100元;把1元平均分成100份,每份是1/100元,48分就是48/100元(板书:5分=5/100元48分=48/100元)

  师:5/100元还可以写成小数元,读作零点零五;48/100元还可以写成小数元,读作零点四八。(继续板书读写)

  小结:、、都是小数,的小数部分有位,是一位小数,和小数部分有两位,是两位小数,当然,还有三位小数、四位小数

  【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。在初步感知阶段,利用元该怎么付?学生把元转化成角,进而追问3角钱以元为单位用分数表示?得出元=3角3/10元,即=3/10。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。在得出分数之后,告诉学生3/10还可以写成像这样的小数,再教给读法】

  三、教学例2

  揭示意义

  1.师:刚才从1元:100分,我们想到了用分做单位的数都表示1元的百分之几,都能写成小数,在其他情境中也能看到这样的现象。瞧,(课件出示米尺)这是一把米尺,我们截取了一部分。把1米平均分成100份,每份是1厘米。1厘米等于1/100米,还可以写成米。(板书:1厘米=1/100米=米)那么,(出示)4厘米、9厘米写成分数和小数各是多少呢?

  学生尝试完成。

  师:请位同学来说一说,你是怎么填的?

  板书:1厘米=1/100米=米

  4厘米=4/100米=米

  9厘米=9/100米=米

  师小结:

  请大家仔细观察一下,、和都是两位小数。那前面对应的这排分数有什么共同之处呢?

  生:都是分母为100的分数。

  师:对,他们都是分母为100的分数。分母是100的分数可以写成两位小数。现在你们知道什么样的分数可以写成两位小数吗?什么样的分数可以写成三位小数呢?

  2.我们继续观察刚才那把米尺,把他平均分成1000份,每份是1毫米。(课件出示)1毫米是1米的1/1000,还可以写成米。(板书1厘米=1/1000米=米)那7毫米、15毫米写成用米做单位的分数和小数各是多少?大家试试吧。

  板书:1毫米=1/1000面米=米

  7毫米=7/1000米=米

  9毫米=9/1000米=米

  小结:

  请大家观察这一行分数和对应的小数,你有什么发现?

  生:分母是1000的分数可以用三位小数表示。

  3.总的观察:

  三位小数是由分母是1000的分数得到的,两位小数由分母是100的分数得到的,那位小数呢?{是由分母是10的分数得到的)谁来说说什么样的分数可以改写成小数呢?

  生:分母是10、100、1000的分数可以用小数表示、:(屏搭上出示这句话)

  师:我们再从右往左看,表示3/10,表示5/100,表示48/100,表示1/1000,表示4/1000你有什么发现?

  生:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  师(指着省略号):四位小数呢?(表示万分之几)

  【设计意图:数学学习的本质在于数学思维、经过对一位、两位、三位小数意义的具体分析后,教师抓住展示和交流这一时机,通过清晰直观的板书,从左往右又从右往左地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解】

  四、练习拓展,巩固提升

  (一)说说做做这个练习分4个层次进行。

  师:上面每个图形都表示整数1,你会用分数和小数把涂色部分表示出来吗?

  7/1033/1009/1000

  选其中个小数请学生说出表示什么意义。并通过上下对比观察,再次强化:分母是10、100、1000的分数,用小数米表示分别是一位小数、两位小数、三位小数。

  2.师:阴影部分是,淮能用小数表示出空白部分?它又表示什么意义?

  3.出示空白图形和、、这三个分数,分别动手涂色表示出这三个小数。

  4.个人自由在空白图形上涂色,同桌互相考查,分别用小数表示出涂色和空白部分。

  【设计意图:在新课结束后,书上安排了练一练,教材的目的在于巩固小数的意义,但如果这样,题目的价值就没能充分发挥出来,将练一练进行适当处理,使书上分散的练习融为一个整体,由浅入深地对一道习题进行充分的挖掘与应用,使题目增值。

  第一层次是对教材目标的基本达成;

  第二层次是对习题的进一步开发,渗透辩证统一思想;

  第三层次培养逆向思维能力;

  第四个层次由个体智慧到合作交流,对习题实现了更高层次的创造和升华:采用了让学生画小数这种直观的操作活动,伴随着学生画前的思考和画后的交流,学生对小数意义的理解也就从画出来想出来说出来,逐渐明了】

  (二)快速抢答。练一练1、2和书上练习第4题。

  (三)我说你写。老帅报几个小数,看谁能又快又好地记下来。

  问座位互相检查一下,写的'对不对?

  (此时有同学争论:和,是不是老师重复报了个?)

  师(故意):大家争论什么?你为什么这样想?

  生1:我认为和一样大,所以是重复写了;

  师:表示什么:意义?0.80又表示什么意义?

  生2:表示十分之八,是把1平均分成100份,取其中8份,表示一百分之八十,是把1平均分成100份,取其中80份。

  师指出:很特别,末尾是0,虽然末尾是0,但它表示两位小数,这个。有特殊的意义,我们以后再学习。(为学习小数的基本性质打下伏笔)

  (四)纠错能手。家文具店里的商品标价不太规范,请你帮忙把这些标价改成用元作单位的小数。

  小刀3角擦皮8分直尺5角9分

  (五)开放题:把6毫米用小数表示出来,你有几种方法?

  (六)出示姚明照片:认识吗?准来介绍介绍他?他的身高是多少?

  生:2米26。(板书2米26)

  师:2米26是口头话,用规范的数学语言,应该说成多少米?(米)你的身高是多少米?猜猜老师的身高。(米)这些数跟我们今天所学的小数还有点不同(整数部分不是0)。关于这些小数的知识,我们以后继续学习。

  【设计意图:在拓展提升部分,通过多种形式的练习,引导学生从身边的现象入手,不断巩固所学的小数的意义和读写方法。注意细节的处理,和的比较,6毫米的三种表示方法,以及姚明身高米的表述,既引导学生归纳出数学知识,又为后续学习打下铺垫】

比的意义教学设计10

  一、教学内容

  《义务教育课程标准实验教科书数学》(青岛版)第十册(第23页)

  二、教材分析

  本节课是在学生学习了整数、小数、分数的意义和应用的基础上进行学习的。百分数源于分数,又有别于一般分数,是小学数学中重要的基础知识之一,在实际生活中有着广泛的应用,因而本节课从实例出发,创设生活情境,把学生带入生活中学习百分数。

  三、学情分析

  百分数是在学生学过了整数、小数、分数的基础上进行学习的。特别是分数的意义和用分数解决实际问题同本课知识有着密切的联系。课前可以让学生广泛的搜集整理百分数的信息,课上再说说这些百分数的意义,既可以提高学生自主探究的欲望,又有利于学生感受百分数的意义,体会百分数在现实生活中的作用。其次,教学时还要注意加强知识间的联系,放手让学生在已有的经验的基础上类推、辨别,培养学生迁移类推能力和分析辨别的能力。

  四、教学目标

  1、结合现实情境,理解百分数的意义,会正确地读、写百分数。

  2、在用百分数表达和交流生活现象、解决实际问题的过程中,体会百分数与生活的密切联系,感受百分数在现实生活中的应用价值。

  3、在解决实际问题的过程中,进一步体会数学知识间的内在联系,增强思维的深刻性,发展数感。

  五、教学要点分析

  本节课的教学重难点:引导学生理解百分数的意义,理解百分数与分数的联系和区别。

  六、教学准备

  学生:搜集标有百分数的实物(商标、说明书、合格证、报刊信息……)

  教师:多媒体教学课件等。

  七、过程设计

  (一)创设情境,初步感知百分数产生的必要

  1、情境出示:

  同学们,为了丰富大家的课余生活,学校准备组织一场投篮比赛,规定每班派一名选手参赛,不过五(1)班有三名同学报名,他们投篮的水平都不错,这是他们平时练习的情况:

  队员投中的个数

  1号队员22

  2号队员17

  3号队员43

  (1)同学们,如果你是五(1)班的班长,你会推荐第几号同学参赛?为什么?

  (2)学生谈自己的想法:可能会有如下几种回答:

  会推荐3号队员参赛,因为他投中的个数最多。

  我觉得光比较投中个数不够公平,还需要看他们共投了多少个。

  2、师小结后,继续出示:

  队员投篮的个数投中的个数

  1号队员2522

  2号队员20xx

  3号队员5043

  (1)有了投篮总数,现在你准备推荐谁呢?(学生思考过后,会想到:直接算出投中个数是投篮总数的几分之几,再去比较。)

  (2)那谁来说说怎么算?(生交流,师板书:22÷25=17÷20=43÷50=,然后再通分===)

  (3)是呀,得出后仍不便于比较,进一步通分为分母是100的分数就便于比较了。现在谁能说说这三个分数所表示的意思呢?(学生回答出三个分数的意义)

  3、小结,引出百分数。

  (1)我们一起来看这三个分数,这三个分数比较特别,分母都是100,都表示某一个同学投中个数与投篮总数的一种关系,这些特殊的数数学上通常不把它们写成分数形式,而是写成88%。(板书:88%)读作:百分之八十八,也就是在原来分子的后面加上百分号“%”来表示,一起再看一遍。(板书:85%)。你会了吗?拿出手指来,我们写写看。画个圈,画条斜线,再画个圈。(众生高举一手在空中书写)这就是百分数的写法。会不会写?像这一类的数就是百分数。(板书课题:百分数)

  (2)谁能说说这三个百分数所表示的意思。(学生分别说出这3个百分数的意思)。

  (3)现在你能确定几号队员投篮水平高些了吗?借助这三个百分数,很好地解决了选择哪个学生参加投篮比赛的问题了,看来百分数是我们日常工作学习的好帮手!

  设计意图:从学生熟悉的生活情境入手,设置一个个问题引发学生的认知冲突,进而更深入地进行思考,从而引出本节课的主角——百分数,这样的引入,使学生不但知其然,也知其所以然。同时在教学伊始就将百分数的读写法呈现给学生,也为后面的学习交流提供了方便。

  (二)联系生活,感悟意义

  1、从具体实例中,理解百分数意义。

  同学们,日常生活中你们见过百分数吗?各是在什么地方见到的?稍微留心一下,在我们生活周围到处可见百分数,这是一件衣服的合格证,(课件出示:合格证),在上面你能找到百分数吗?请你读出来。(学生读:棉75%涤25%)75%、25%表示什么意思呢?

  2、小组交流自己搜集的百分数的意义。

  同学们,课前老师也布置大家收集标有百分数的标签、合格证等,都带来了吗?请大家在小组内交流交流,互相说说你是在什么地方找到的?这些百分数又表示什么意思?(学生展开交流,教师参与其中)

  3、全班交流。下面想请几位同学带着你的收集到前面来展示给大家看一下。

  4、补充练习。

  (1)老师这儿还有几个百分数,一起来看,(课件出示课本中的情境图)从中能看到百分数吗?它们又分别表示什么意思呢?(学生交流)

  (2)一起再来看老师从网上搜索到的一条信息,(出示网络信息:20xx年上半年中国汽车出口金额比同期增长110。7%,预计全年汽车出口将继续保持较高增长。)自己轻声地读一遍。这儿的110。7%又表示什么意思呢?(板书:109。1%)从这段话中你能感受到什么?

  设计意图:本环节主要通过学生自主交流收集到的各百分数所表示的意义,使学生感悟百分数的意义,同时体验百分数在日常生活中的广泛应用。在学生充分交流的基础上,又出示了几个百分数,看似随意,实则是别有用心,这几个百分数不只是与学生收集的百分数的简单重复,而正好是学生所收集的空白所在,它们的出示使学生的认知结构更趋完善。

  (三)分析比较,深化认识

  1、回顾整理。

  刚才我们一起研究了这么多百分数,那现在让我们一起再来回顾一下,我们刚才在交流这些百分数的意义时,全都采用了怎样的说法呀?(引导学生交流出:谁是谁的百分之几。)

  2、归纳小结。

  百分数的意义:百分数就是表示一个数是另一个数百分之几的数。(板书:百分数表示一个数是另一个数的百分之几的数。)

  3、观察分析。

  同学们,到目前为止,关于百分数的有关知识咱们也了解得很多了,但不知大家有没有疑问,百分数和分数一样吗?百分数有哪些特别之处呢?下面让我们仍以四人为小组,去研究研究,看看百分数有什么特别之处。

  4、学生谈发现,师引导整理。

  (1)分数和百分数的意义不同。(百分数的分母只有是100,而分数的分母是可以变动的;分数既可以表示一个数是另一个数的几分之几,也可以表示一个具体的数量,而百分数只能表示一个数是另一个数的百分之几;百分数后面不能带单位名称。小学教学设计网)

  (2)写法不一样。

  (3)读法不一样。

  (4)百分号前面可以是整数,也可以是小数。

  (5)百分号前面的数可以小于100,可以等于100,也可以大于100。(师根据学生的回答板书:意义不同、写法不同、读法不同、百分数的前面可以是小数……)

  5、实例中体会不同。

  同学们真善于观察,发现了百分数和分数是不同的,有很多特别之处,现在请你来看一看下面哪几个分数可以用百分数来表示?哪几个不能?(课件出示:一堆煤吨,运走了它的。米相当于米的。)为什么?(引导学生明白:、这两个分数都表示一种关系,而其余几个分数都是一个具体的数量)那你能不能将这两句话读一读,让别人能听出其中的区别?

  设计意图:受思维定势的影响,学生往往把百分数仅仅“形象化”地理解为分母是100的分数,教材中又没有涉及百分数与分数区别这一内容,因而此时教师引导学生讨论百分数与分数的区别,并设计练习,让学生结合实际去辨析、去感知二者的不同之处,帮助学生拨开心中迷雾,认识“庐山”真面目。

  (四)多层练习,巩固深化

  1、出示:1%、18%、50%、89%、100%、125%、7。5%、0。05%、300%

  要求:喜欢读哪个就读哪个,并说说为什么喜欢它。(生读,并说出自己喜欢的理由。)

  设计意图:在这一个练习中,不是一味地让学生机械地读,而是让学生带着问题有选择地读。学生在回答哪些百分数比较特别,以及这些百分数的分子为什么千姿百态时,其求异思维和求同思维也得到了相应的发展。通过问题包装、形式变化,枯燥的百分数的知识放射出迷人的色彩。每个学生都乐意读出自己感到特别的百分数,都乐意读出自己的思考,表述自己的发现,进入积极的求知状态,成为学习的主人。

  2、小游戏:让学生写出10个喜欢的百分数,学生动笔写了一小会,教师突然喊停笔。要求学生用今天学的百分数向全体同学汇报写了多少?

  设计意图:这个练习要求学生用含有百分数的句子,来说明已经写的`百分号的个数,对于刚学习百分数的学生来说,有一定的思维难度。但是通过这个练习,形成思维的阶梯,不仅让学生练习了写百分号,更重要的是将学生所学的知识用到了实践中,激发了学生的兴趣,开拓了学生的思维,为后续知识的教学做好了铺垫。

  3、读出下面的句子,并说说自己的理解。

  (1)屏幕出示:“我国的耕地面积约占世界的7%,我国人口约占世界的22%。”

  (2)学生谈自己的理解与体会。

  设计意图:通过这样的练习,学生不仅巩固了百分数的读法,而且从这两句话中受到了爱国主义的教育。用仅占世界7%的土地却能够养活占世界22%的人口,从中足以看出我国的强大。让学生感到身为中国人而骄傲、自豪。(?感觉从珍惜土地的角度出发更好一些,强大?有点勉强)

  (五)总结提升,体现价值

  同学们,短短一节课很快就要结束了,想在一节课时间里真正弄清百分数的所有知识那是不现实的,今天只是一个开始,希望大家以此为起点,不断去研究更多有关百分数的知识,好吗?最后老师还想给大家留个调查作业。这几年,我们烟台的变化可太大了,这一点咱们是有目共睹,有兴趣的同学课后可以展开专题研究,向家长、亲戚了解了解,或者到报纸上、网络上去查找查找,收集收集有关我们烟台近几年各方面发展变化情况的百分数,相信当我们把收集来的数据进行全班交流时,你一定会被我们烟台的变化之大以及变化之快所折服!

  设计意图:现实中丰富鲜活的素材,使学生从“单纯从书本中学数学”变为“密切联系生活做数学”。让学生在数学学习中理解了百分数的意义及价值,感受到了数学学习的价值,激发学生对数学探索的兴趣和求知欲望。

  八、板书设计

  百88%、85%、9。3%、100%、110。7%,……

  分表示一个数是另一个数的百分之几的数。

  数和分数区别:意义不同、读法不同、写法不同、百分数的前面可以是小数……

  九、创新特色

  和谐高效的数学课堂,追求的是思维对话与碰撞。为调动学生思维的积极性,本节课:

  (一)0把数学引向生活,引向学生身边实际。

  《新课标》强调了“数学教学要体现生活性”,“要学有用的数学”,要求“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发”,使他们体会到数学就在身边,感受到数学的情趣和作用,体验到数学的魅力。本节课中,我根据学生的认知特点,紧密联系生活实际,发动学生去寻找生活中的百分数,将数学知识与学生生活实际紧密地联系起来,让学生初步感知百分数;然后让学生合作讨论,自主探索发现,自我感悟并初步得出百分数的意义,学生学得既轻松、快乐,又扎实、灵活。

  (二)把数学学习活动建立在认知的冲突处,思维的提升处。

  1、把数学学习活动建立在认知的冲突处。

  本节课伊始,围绕推荐几号学生参加篮球比赛,引发学生思考。在否定了学生知识结构中已有的各种比较方案后,无形中“逼迫”学生思考思考、创造出更趋完美的比较方案,百分数也就在这样特定的背景下应运而出了。

  2、把数学活动建立在思维的提升处。

  在学生自主交流收集的百分数,对百分数的意义有了初步的感悟之后,引导学生深入的探讨百分数和分数的区别与联系,通过辨析与感知,使学生准确的把握住了百分数的本质,理解了百分数的意义。

  十、评析

  本节课较好地的解决了数学与生活,数学学习过程与思维过程和谐统一的问题。

  (一)现实情境与数学问题的产生和谐统一。

  数学的魅力在现实,数学学习的魅力在现实问题。教学中,我们找到学生经历过、体验过的本真现实,也就找到了吸引学生的魅力。本节课,执教者追索到篮球比赛派谁上场这一现实。在学生的经历中,派谁上场就是一个简单的、指令性行为,其实不然,在教师巧妙设计的悬念和设问中,抖露出一系列学生熟视无睹的内在的学向和发人深省的数学问题,数学价值、数学学习的价值昭然若揭,学生在派谁上场的研究中,获得的体验是真实的、具体的,思维必然由感而发。

  (二)问题解决与事实解读和谐统一。

  数学学习的过程是解决问题的过程,在此过程中,学生已有的知识经验与新的数学问题发生碰撞,通过思维对话,寻求问题解决策略。本节课,执教者通过该派谁上场的确定过程,让学生算出答案——每人投中个数占投篮总数的几分之几。结果是表示三个人投中率的分母不同,不容易比较。此时,事实说明和呼唤新的表示方法,使大家容易比较的方法,至此,百分数在“呼唤”中闪亮登场,这是人心所向,众望所归的。在百分数意义的解读过程中,执教者又再次运用已有的事实。

  (1)从投篮比赛结果生成的的百分数中去解释每个百分数的意思。

  (2)从日常生活中所见所用的百分数各自表示的具体含义去解读。

  这样把百分数的学习纳入到一个个具体的事实研讨与解读过程中,既让学生体会百分数与生活实际的联系,又为学生认识、理解百分数的意义提供了足够的支持。

  (三)知识的学习与有效建构和谐统一。

  数学知识是延续的,数学学习与探究的空间永无止境。在数学知识中,探求其联系性,在数学学习中,把握知识的生成与联系,这是组织建立和谐的知识结构,形成良好的的认知结构的重要途径。本节课,为使学生形成结构,执教者组织学生去解析分数、百分数之间的异同,这是建构的得力举措。

  (四)教书和育人和谐统一。

  数学教学的一个重要指向是培养学生的数学素养。解读本节课的设计,执教者既重视了通过百分数的引入与学习,使学生在经历百分数的产生过程,百分数意义的认知过程,获得了应有的体验和感悟,思维能力得到了发展,更重要的是,执教者对教材、教学处理的人性化、教育化。从课的引入开始,教师就把教学活动设计成教给学生做人做事、解决实际问题的过程;在练习设计中,又透露出种种人文关怀:“你喜欢读哪个就读哪个,并说说为什么喜欢它”;“我国的耕地面积约占世界的7%,我国人口约占世界的22%”,谈谈自己的体会。这些正是时代赋予教育者的责任。

比的意义教学设计11

  一、教法建议

  【抛砖引玉】

  通过本单元的教学要使学生掌握整除、约数、倍数、质数、合数、质因数、公约数、最大公约数、公倍数、最小公倍数等概念;知道有关概念之间的联系和区别,能够有条理、有根据地进行思考;能使学生掌握能被2、5、3整除的数的特征;会分解质因数;会求最大公约数(两个数)和最小公倍数。

  (一)教学整除的概念

  因为整除这部分知识,学生在第八册教材中已接触过,因此在教学整除的概念时要注意抓住三点。

  1.复习“整除”的意义。

  例如:你能说出整除的含义吗?下面哪个算式的第一个数能被第二个数整除?

  23÷7=3……2 6÷5=1.2

  15÷3=5

  24÷2=12

  2.用定义的形式对“整除”加以概括,并用字母表示。

  两个数相除,如果用字母表示,可以这样说:整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也就可以说b能整除a)。

  3.突出强调除数不有是0。

  (二)教学约数和倍数的概念

  约数和倍数的概念是本单元最基本的概念,教学时要抓住五点。

  1.通过“整除”引出“约数”和“倍数”的概念后,加以概括。

  例如:15÷3=5,15能被3整除,我们就说15是3的倍数,3是15的约数。

  如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数。

  2.要强调倍数和约数是一对密不可分的概念。它们是互相依存的关系。

  3.要掌握求一个数的“约数”和“倍数”的方法,并掌握其各自的特征。

  在掌握一个数的约数和倍数求法的基础上,重点说明其特征:

  一个数的约数的个数是有限的,其中最小的约数是1最大的约数是它本身。

  一个数的倍数的个数是无限的,其中最小的倍数是它本身。

  可讨论一下为什么?

  4.强调一个数既可以是另一个数的约数,又可以是其它数的倍数。

  如:12既是60的约数,又是6的倍数。

  5.要重点处理好0的问题。

  根据约数和倍数的概念,0是任何自然数的倍数,任何自然数都是0的约数。但研究分解质因数、最大公约数、最小公倍数时,是把0除外的,所以要着重指出在后面研究的内容里不包括0,这样可以减少不必要的麻烦。

  (三)教学能被2、5、3整除的数的特征主要把握以下四点

  1.通过观察、引导,掌握能被2、5、3整除的数的特征。

  2.能根据特征进行判断。

  3.通过能被2整除的特征,引出奇数和偶数的概念。

  能被2整除的数叫偶数,不能被2整除的数叫做奇数。

  4.深化知识,沟通知识之间的联系。

  (1)在□中填上几符合要求。

  5□,能被2整除又能被3整除。

  1□0,能被2、3、5同时整除。

  (2)能被9整除的数,能否一定被3整除?为什么?

  (四)教学质数、合数、分解质因数要抓住四点

  1.通过对每个数的约数的个数及特点进行分类,引出质数、合数的概念。

  一个数,如果只有1和它本身两个约数,这样的数叫做质数(也叫做素数)。

  如:2、3、5、7、11都是质数。

  一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

  如:4、6、8、9、10、12都是合数。

  2.重点说明“1”既不是质数,也不是合数。

  3.能利用质数与合数的概念,判断一个数是质数还是合数。

  如:下面哪些数是质数?哪些数是合数?

  19、21、43、67、2、89

  4.掌握质因数、分解质因数的概念和分解质因数的方法。

  (1)每个合数教可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

  如:60=2×2×3×5,2、2、3、5都是60的质因数。

  (2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

  (3)通常用短除法来分解质因数,这样比较简便。

  把一个合数分解质因数,先用一个能整除这个合数的质数(通常从最小的开始)去除,得出的商如果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上面的方法继续除下去直到得出的商是质数为止,然后把各个除数和最后的商写成连乘的形式。

  (五)教学公约数和最大公约数要抓住以下四个方面

  1.公约数和最大公约数的概念

  几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

  例如:1、2、4是8和12的公约数;4是8和12的最大公约数。

  2.通过公约数的概念引出互质数的概念

  公约数只有1的两个数,叫做互质数。

  例如:5和7是互质数,7和9也是互质数。

  3.求两个数最大公约数的方法

  为了简便、通常写成下面的形式。

  2 18 30 ……用公有的质因数2除

  3 9 15 ……用公有的质因数3除

  3 5 ……除到两个商是互质数为止

  把所有的除数乘起来,得到18和30的最大公约数是2×3=6。

  求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。

  在除的过程中,有时也可以用两个数的公约数去除。

  4.求最大公约数的两种特殊情况

  (1)如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

  (2)如果两个数是互质数,它们的最大公约数是1。

  例如:7和21的最大公约数是7。

  8和15的最大公约数是1。

  对于能直接看出最大公约数的就不再用短除法来求了。

  (六)教学公倍数和最小公倍数,要抓住以下四个方面

  1.公倍数和最小公倍数的概念。

  几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的'最小公倍数。

  例如:12、24、36、……都是4和6的公倍数,12是4和6的最小公倍数。

  2.求最小公倍数的方法。

  通常我们用分解质因数的方法来求几个数的最小公倍数。为了简便,通常写成下面的形式:

  (1)求18和30的最小公倍数。

  2 18 30 ……用公有的质因数2除

  3 9 15 ……用公有的质因数3除

  3 5 ……除到两个商是互质数为止

  把所有的除数和商连乘起来,得到18和30的最小公倍数是2×3×3×5=90。

  求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。

  (2)求8、12和30的最小公倍数。

  求三个数的最小公倍数,通常这样做:

  2 8 12 30 ……用三个数公有的质因数2除

  2 4 6 15 ……4和6还有质因数2,再用2除以这个数,把15移下来

  3 2 3 15 ……3和15还有公有的质因数,再用3除这两个数,把2移下来

  2 1 5 ……2、1和5每两个数都是互质数,除到这里为止

  在讲求最小公倍数的方法时,重点讲明算理。

  3.求两个数最小公倍数的特殊情况。

  (1)如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍

  数。

  如:12和48的最小公倍数是48。

  (2)如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

  如:7和8的最小公倍数是56。

  以后计算时,如果能直接看出最小公倍数是多少,可以不写出计算过程。

  4.通过讨论,比较求两个数的最小公倍数与求三个数的最小公倍数的相同点和不同点;比较求最大公约数与求最小公倍数的相同点和不同点。

  【指点迷津】

  1.“整除”和“除尽”有什么联系和区别?

  在整数除法里,a÷b=c,除得的商c如果是整数,而没有余数,我们就说,a能被b整除,或者说b能整除a。如:15÷3=5,我们说15能被3整除,或者说3能整除15。

  在除法里,a÷b=c,数a、数b、以及商c不见得是整数,但没有余数,我们就说a能被b除尽,或者说b能够除尽a。例如,10÷4=2.5、1.5÷3=0.5、1.5÷0.3=5,都可以说被除数a能被除数b除尽。

  从上面可以看出,整除是限定在整数除法里的,而“除尽”就不一定限于整数除法。我们还可以用集合图表示其关系:如果a能被b整除,a就一定能被b除尽;反之,a能被b除尽,a却不一定能被b整除。即整除可以说是除尽,但除尽不一定是整除,整除是除尽的一种特殊情况。

  2.“约数”和“倍数”有什么关系?又有什么不同?

  如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。如12÷3=4,我们就说12是3的倍数,

  3是12的约数。不能说12是倍数,3是约数。由此可见,倍数和约数是相互依存的。

  为了说明它们的不同点,请看下表。

  个数

  最小

  最大

  一个数的约数

  有限

  是1

  是本身

  一个数的倍数

  无限

  是本身

  没有

  3.什么叫质因数?什么叫分解质因数?

  把一个合数分解成若干质数连乘积的形式,每一个质数就是这个合数的质因数。如:12=2×2×3,2、3叫12的质因数。

  分解质因数就是把一个合数写成若干质数连乘积的形式。如12=2×2×3。

  4.“0”是偶数吗?最小的偶数是几?

  能被2整除的数叫做偶数,因为“

  0”能被2整除,所以“0”是偶数。但在小学讲数的整除时,是在自然数的范围内,不包括“0”,所以我们可以不说“0”是偶数。

  最小的偶数是几?先要搞清范围,在自然数范围内,最小的偶数是2,到中学里学了负数就不存在最小的偶数了。

  二、学海导航

  【思维基础】

  1.举例说明什么叫整除?

  例如:20÷5=4,20能被5整除,或5能整除20。

  整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)。

  2.什么是约数和倍数?它们之间有什么关系?

  如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数。

  举例:20÷5=4,20能被5整除,我们就说20是5的倍数,5是20的约数。

  约数和倍数是互相依存的。

  3.找出60的约数,4的倍数。

  60的约数有:1、2、3、4、5、6、10、12、15、20、30、60。

  4的倍数有:4、8、12、16、20……

  从上面可以看出:一个数约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

  一个数的倍数的个数是无限的,其中最小的倍数是它本身。

  4.说说下面的数哪些能被2整除?哪些能被3整除?哪些能被5整除?各自的特征是什么?

  21、54、65、204、280、58、83、114、75、320、87、155

  能被2整除的数有:54、204、280、58、114、320。

  能被3整除的数有:21、54、204、114、75、87。

  能被5整除的数有:65、280、75、320、155。

  由此可知:

  个位上是0、2、4、6、8的数,都能被2整除。

  一个数的各位上的数的和能被3整除,这个数就能被3整除。

  个位上是0或者5的数,都能被5整除。

  5.说出什么叫质数、什么叫合数并判断下面各数哪些是质数、哪些是合数。

  3、27、41、6、11、19、69、57、97

  一个数,如果只有1和它本身两个约数,这样的数叫做质数(也叫做素数)。

比的意义教学设计12

  教学目标:

  1.使学生在现实的情境中,理解小数的意义,掌握小数的读写方法。

  2.使学生经历小数意义的探索过程,积累数学活动的经验,进一步发展数感,培养观察、比较、抽象、概括以及合情推理的能力。

  3.使学生能体会到小数与日常生活的密切联系,增强自主探索与合作交流的意识,树立学好数学的自信心。

  教学重点、难点:

  理解小数的意义,会正确读写小数。

  教学过程:

  一、导入

  同学们,我们在三年级的时候就认识了这样的一些小数,今天这节课我们将进一步学习有关小数的知识,让我们一起来认识小数的意义和读写法。(板书课题)

  二、回顾旧知,铺垫新知

  1、(1)生活中,许多地方都能看到小数,你在那些地方看到过的?

  (2)这些商品的价格你想了解一下吗?注意小数部分的读法,从左往右依次读出各个位上的数。

  你能用角或分做单位说出下面物品的价钱吗?

  2.旧知铺垫

  以“元”为单位,3角用分数表示是几分之几元?你是怎么想的?

  (1元是10角,1角是1元的'十分之一,3角是1元的十分之三,所以3角就是十分之三元。)

  用小数表示就是0.3元。

  3.初步认识两位小数。

  (1)5分和48分都是以什么为单位的?

  如果以“元”为单位,1分用分数表示是几分之几元,用小数表示呢?你是怎么想的?(1元=100分,1分是1元的百分之一,就是1/100元,也就是0.01元。)

  (2)5分用分数表示是多少元呢?48分呢?学生讨论

  (3)学生汇报,教师根据学生回答完成板书。

  (4)5分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,5分就是1元的百分之五。)

  百分之五元可以写成小数0.05元。

  (5)48分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,48分就是1元的百分之四十八。)

  百分之四十八元可以写成小数0.48元。

  三、探究新知

  1.理解一位小数的意义。1分米用分数表示是几分之几米?3分米用分数表示是几分之几米?你是怎么想的?

  2.进一步理解两位小数的意义。

  下面,我们请尺子来帮助我们认识小数。

  (1)1厘米用分数表示是几分之几米?你是怎么想的?

  (2)百分之一米用小数表示是多少?

  (3)把4厘米和12厘米改写成以“米”作单位的分数和小数。

  (4)观察一下,这二个小数都是把1米平均分成几份?表示其中的1份就是0.01米,表示其中的4份就是多少米?表示其中的12份呢?你是怎么想的?

  3.自主探究三位小数的意义。

  (1)拿出你的尺子,看一看1毫米有多长,(教师拿出一把米尺),我这里有一把米尺,想一想,1米等于多少毫米?1毫米用分数表示是几分之几米,用小数表示是多少米?你是怎么想的?

  (3)0.001米小数点和1之间为什么要多写二个0?(因为1毫米是1米的千分之1,少二个0,就是十分之一了。)

  (4)这几个小数跟前面的不太一样,你们能读准吗?学生齐读三位小数。

  (5)观察一下,这三个小数都是把1米平均分成几份?表示其中的1份就是0.001米,表示其中的40份就是多少米?表示其中的105份呢?你还能想到什么?

  4.

  总结归纳小数的意义。

  (1)看黑板,哪些是一位小数?哪些是两位小数?哪些是三位小数?

  (2)从分数往小数看,什么样的分数可以用小数表示?(分母是10、100、1000……的分数都可以用小数表示。)

  从小数往分数看,一位小数可以表示怎样的分数?两位小数?三位小数呢?

  谁能连起来说说。

  总结:分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,你还能想到什么?能说得完吗?这就是小数的意义。

  (3)同桌互相说一说。

  四、巩固拓深认知

  1.试一试:

  学生独立完成,并交流汇报。

  (提示:7角3分可以看作多少分,这样改写就比较容易了。)

  2.数形结合(练一练)。

  请同学们看下面这些图,每个图形都表示整数“1”,第一个图是把什么看做整数“1”?将这个整数“1”平均分成了多少份?第二个图呢?第三个图呢?

  学生自己填,再汇报。说说每题你是怎么想的?

  观察这些图形,你还能想到哪些分数和小数?

  判断这些小数各是几位小数?为什么?(小数部分有几位就是几位小数。)

  3.练习四1

  我们把整数“1”用一个正方形来表示,你能根据要求涂色,并填出相应的小数吗?

  五、课堂小结

  这节课你学了什么?

比的意义教学设计13

  教学内容:

  九年义务教育六年制小学数学第十二册P62——63

  教学目

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:认识正比例的意义

  教学难点:掌握成正比例量的变化规律及其特征

  设计理念:课堂教学中从学生的已有的`生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

  一、复习铺垫激情促思

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、初步感知探究规律1、出示例1的表格(略)

  说说表中列出了哪两种量。

  (1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

  (2)引导学生观察表中数据,寻找两种量的变化规律。

  根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

  根据发现的规律启发学生思考:这个比值表示什么?上面的规律能否用一个式子表示?

  根据学生的回答,板书关系式:路程/时间=速度(一定)

  (3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

  (板书:路程和时间成正比例)

  2、教学“试一试”

  学生填表后观察表中数据,依次讨论表下的4个问题。

  根据学生的讨论发言,作适当的板书

  3、抽象表达正比例的意义

  引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书:=k(一定)

  揭示板书课题。

  先观察思考,再同桌说说

  大组讨论、交流

  学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

  学生根据板书完整地说一说表中路程和时间成什么关系

  学生独立填表

  完整说说铅笔的总价和数量成什么关系

  学生概括

  三、巩固应用深化规律

  1、练一练

  生产零件的数量和时间成正比例吗?为什么?

  2、练习十三第1题

  先算一算、想一想,再组织讨论和交流。

  要求学生完整地说出判断的思考过程。

  3、练习十三第2题

  先独立判断,再有条理地说明判断的理由。

  4、练习十三第3题

  先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

  分别求出每个图形的周长和面积,并填写表格。

  讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

  5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

  讨论、交流

  独立完成,集体评讲

  说明判断的理由

  说一说,画一画

  填一填,议一议

  讨论

  四、总结回顾评价反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

比的意义教学设计14

  教学内容:

  人教版四年级下册第32页和第33页

  教学目标:

  1.理解小数的意义,认识小数的计数单位,知道相邻两个计数单位之间的进率。

  2.借助学生熟悉的米尺和格子图等实物,让学生多角度理解小数与分数的关系,经历探索小数意义的过程,在探索交流中体会数学学习的乐趣。

  3.培养学生迁移、类推的能力及良好的数学学习品质。

  教学重点:

  理解小数的意义,知道小数的计数单位及其进率。

  教学难点:

  理解小数的意义

  教学准备:

  课件、米尺

  教学过程:

  一、复习导入

  (一)交流资料

  师:昨天老师让同学们收集一些生活中的小数,收集了吗?谁愿意和大家分享一下?

  生汇报交流。

  如:一袋方便面的价钱是1.2元;一个笔记本的价钱是2.6元……

  (二)师出示图片

  师:王老师也找了一些图片,看大屏幕。

  请你认真读一读,并说一说每张图表示什么含义。

  生读小数并结合图说小数表示的含义。

  (三)小结

  看来小数在我们的生活中应用非常广泛,三年级时我们已经对它有所了解,今天我们进一步研究小数(板书:小数的意义)。

  二、探究新知

  (一)观察猜测,实践体验

  师:今天老师给同学们带来一个大家伙,(师举起给学生们看)什么呀?(生:米尺)它有多长?(1米)可以干什么用?(测量物体的长度)今天这节课上它的功劳是最大的,借助它我们会掌握很多新知识。

  请两位同学合作测量一下课桌的高度及它表面的长度,谁愿意?

  两位学生测量,其他学生观察,教师板书记录:桌子长60厘米多,高80厘米。

  师:如果用米作单位,不够1米怎么办?

  生:可以用小数。

  小结:在我们测量和计算时,往往得不到整数的结果,这时常用小数来表示。

  (设计意图:教师选择学生熟悉的情境,让学生通过动手实际测量活动,进一步理解和感受小数产生的必要性。)

  (二)直观感知

  1.借助课件,引导理解一位小数的意义。

  师:请同学们观察,把1米平均分成10份,每份是几分米?(生:1分米)写成分数是几分之几米?(生:十分之一米)像这样的分数也可以用小数0.1米表示

  师:那3分米、7分米如果用米作单位,用分数和小数怎么来表示?

  学生独立思考后同桌交流,汇报。

  生:3分米是表示把1米平均分成10份,表示其中的3份,用分数表示是十分之三米,也可以用0.3米表示;7分米则是……(生汇报的同时课件出示。)

  师:0.3米里有几个0.1米呢?0.7米里又有几个0.1米呢?1米里面有几个0.1米呢?

  生独立思考后汇报。

  师出示米尺教具:谁能在我的米尺上指出0.1米、0.3米、0.7米及0.9米……

  生台前汇报结果,并说说是怎么想的

  师:你们太棒了!通过观察以上分数和小数,发现了什么?

  小组讨论交流汇报。

  生:像这样十分之几的分数可以用一位小数表示。

  (设计意图:多角度、多形式地强化认识,理解一位小数是十进分数的另一种表现形式,并渗透小数的计数单位和进率。)

  2.借助直观迁移,理解两位小数的意义。

  课件出示32页图片

  师:把1米平均分成100份,每份是多少?(生:1厘米)1厘米用米作单位,用分数怎么表示?(一百分之一米)也可以用0.01米表示。那么4厘米、8厘米用分数怎么表示?用小数呢?生独立思考后组内交流。

  汇报整理(课件演示)

  师追问:那么12厘米、38厘米用米作单位用分数怎么表示?小数呢?谁来老师手里的米尺上指一指呢?

  生找,指,并说为什么,那么1米里又有多少个0.01米呢?(100个)

  师:你们又有什么发现呢?

  生:分母是100的分数可以用两位小数来表示(师板书)。

  3.直观迁移,独立探究,理解三位小数的意义。

  师出示课件,33页的图。

  生独立思考后完成书中练习,然后小组交流。

  师追问:你能从这幅图中找到其他小数吗?(如:0.006,0.015……)

  你又有什么发现呢?

  汇报:分母是1000的分数也可以用三位小数表示。

  (设计意图:在初步理解一位小数的意义的基础上,通过独立探究、小组交流等方法理解两位小数、三位小数的具体意义,突破了难点,使学生进一步体会和理解了小数的意义,又一次渗透了计数单位和相邻两个计数单位间的进率。)

  4.迁移推理。

  师:试想一下,什么样的分数可以用四位小数来表示?五位小数呢?

  生:分母是10000的分数可以用四位小数表示,分母是100000的分数可以用五位小数表示……

  小结:分母是10、100、1000……这样的分数可以用小数来表示(板书)。

  (设计意图:学生通过迁移应用,已经对小数的意义有一定的理解,在此基础上继续推理下去,有助于学生清晰而深入地理解,从而感知十进分数与小数的关系,归纳出小数的意义。)

  (三)认识计数单位

  师:整数有计数单位,小数也有计数单位,你知道小数的计数单位吗?尝试说一说。

  生根据自己的.理解说。

  师课件出示,并要求学生齐读(板书上显示)

  追问:通过观察发现,相邻两个计数单位之间的进率是多少?(生:10)

  板书:相邻两个计数单位之间的进率是10。

  (设计意图:通过前面的学习,学生对小数的意义有了更深入的理解,所以这部分知识我采用让学生试着说一说然后直接出示,提高了学生探究的自主性。)

  三、巩固练习

  1.完成书33页“做一做”,独立完成,全班订正。

  2.完成书36页1、2、3题,要求:认真读题,独立思考。

  (设计意图:通过这几道基础练习题,让学生进一步理解小数的意义,并掌握小数的计数单位,为后续的学习奠定基础。)

  四、总结

  1.师:回顾一下本节课的内容,谈一谈自己的收获。生畅所欲言。

  2.齐读书33页“你知道吗?”内容,了解小数的产生。

  (设计意图:通过学生对本节课知识的梳理,加深对本课内容的认识、理解。通过阅读,让学生了解小数产生的历史,对学生进行了数学文化的渗透。)

  五、板书设计

  小数的意义

  相邻两个计数单位的进率是10

  六、布置作业:

  完成书37页7、8题

  七、教学反思

  在本节课教学中我重视让学生亲自经历测量活动,结果不能用整数表示时,加强了对小数产生的必要性认识。

  在教学小数意义这部分时,我充分利用教学课件和实物教具相结合,直观引出十分之几、百分之几、千分之几的数都可以用小数表示,然后抽象概括出小数的意义,在此过程中我充分借助迁移类推,合理安排引导和放手的时机,给学生创造了大量的自主探索的机会,从而提高了学生自主学习的能力。

比的意义教学设计15

  教学内容:

  九年义务教育六年制小学数学第十二册P64——65

  教学目标:

  1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

  2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:

  认识反比例的意义

  教学难点:

  掌握成反比例量的变化规律及其特征

  设计理念:

  课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。

  教学步骤教师活动学生活动

  一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

  2、判断下面两种量是否成正比例?为什么?

  时间一定,行驶的路程和速度

  除数一定,被除数和商

  3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

  4、导入新课:

  如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、探究新知1、出示例3的表格(略)

  学生填表

  2、小组讨论:

  (1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

  (2)你能找出它们变化的规律吗?

  (3)猜一猜,这两种量成什么关系?

  3、全班交流

  学生初步概括反比例的意义(根据学生回答,板书)

  4、完成“试一试”

  学生独立填表

  思考题中所提出的.问题

  组织交流,再次感知成反比例的量

  5、抽象表达反比例的意义

  引导学生观察例3和“试一试”,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用怎样的式子来表示?

  根据学生的回答,板书:x×y=k(一定)

  揭示板书课题。

  学生填表

  小组讨论、交流

  学生初步概括

  相互补充与完善

  独立填表

  交流汇报

  学生概括

  三、巩固应用1、练一练

  每袋糖果的粒数和装的袋数成反比例吗?为什么?

  2、练习十三第6题

  先算一算、想一想,再组织讨论和交流。

  要求学生完整地说出判断的思考过程。

  3、练习十三第7题

  先独立思考作出判断,再有条理地说明判断的理由。

  4、练习十三第8题

  先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。

  5、思考:

  100÷x=y,那么x和y成什么比例?为什么?

  6、同桌学生相互出题,进行判断并说明理由。

  讨论、交流

  独立完成,集体评讲

  说一说

  填一填,议一议

  讨论

  相互出题解答

  四、总结反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?课后你能与同学相互出题进行练习吗?

  评价总结

221251