七年级数学《整式的加减》说课稿
作为一名人民教师,往往需要进行说课稿编写工作,认真拟定说课稿,如何把说课稿做到重点突出呢?以下是小编为大家整理的七年级数学《整式的加减》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
七年级数学《整式的加减》说课稿1
各位老师:
大家好!
今天我说课的题目是人教版七年级(上)第二章第二节《整式的加减》第1课时。我从以下几个方面进行说课。
一、说教材:
1、教材所处的地位及作用:
本节课选自新人教版数学七年级上册§2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的'运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。
2、学生情况分析:
七年级学生理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心和求知欲,形象直观思维比较成熟,但抽象思维能力还比较薄弱。因此,我们要营造轻松、和谐的课堂气氛,充分激活学生的探索欲望,让学生在教师创设的情景中充满好奇的学,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题,在实践中领悟数学思想,在评价中逐步形成数学价值观。
二、教学目标:
关于教学目标,教学重难点以及教法在这里就不作一一说明了,重点给大家介绍一下教程。
三、教学流程:
(1)导入环节:
多媒体出示两个问题,以具体生活情景为背景,有效的吸引学生的注意力,增强好奇心及求知欲。
(2)形成概念:
在讲解同类项概念时为让学生充分发挥主体作用,从自己的视点去观察、归纳、总结出同类项的概念,我设计了小白兔找家和讨论环节。并编了一个同类项的口诀。
(3)强化概念:
为强化概念使学生牢固掌握同类项的知识,进一步加强对同类项概念的理解。增强应用意识,培养学生的发散思维。我设计了真真假假和填空。
(4)合并同类项的讲解:
讲解合并同类项时,以生活实例为切入点,通过对简单的、熟悉的数量运算,激发学生学习合并同类项的欲望,从而较自然的引入新课题合并同类项。
分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。又编了另一个口诀。
以一道例题的训练为桥梁来得出合并同类项的一般步骤。通过具体的练习让学生初步掌握如何运用合并同类项法则。
在比较两种方法的过程中,体会合并同类项对运算的简化作用。
(5)数学与生活:
通过对熟悉的事物,让学生感受到数学就在身边,提高学生应用数学知识解决实际问题的能力,增强应用意识。
(6)总结:
由学生总结本节课内容,逐步提高学生的归纳总结能力和语言表达能力。
(7)课堂感悟:
进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。
(8)作业:
进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。
七年级数学《整式的加减》说课稿2
一、教学目标:
1、使学生理解多项式中同类项的概念,会识别同类项。
2、使学生掌握合并同类项法则,能进行同类项的合并。
3、通过观察、比较交流了解教学的分类思想,并能准确判断出同类项。并熟练运用法则进行合并同类项的运算。
4、激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。
二、教学重难点:
重点:同类项的概念、合并同类项的法则及应用。
难点:正确判断同类项;准确合并同类项。
三、教学方法:
引导、探究式教学、合作、交流、观察、练习、
四、教学过程:
(一)情景导入:
1、作为农村学生,我们都知道自己家的菜园里会把西红柿、黄瓜、茄子、葱分别栽培在一起,为何不把它们交叉种植呢?
再如,在小学时,老师会让我们把水果和非水果进行分类,生活中处处有分类问题,在教学中我们也会遇到一种分类问题,今天我们就共同来学习。
根据下列单项式的特征试将其分类:
8n、 -7ab、3ab、2ab、6xy、5n、-3xy、-ab、
2、形成概念:
以上式子归为同类需要有什么共同的特征?(引导学生看书,让学生理解同类项的定义)
概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:(1)同类项与系数无关,与字母的排列顺序也无关
(2)几个常数项也是同类项。
(二)强化练习:
1、思考:下列各组中的两项是不是同类项?为什么?
(1)ab与3ab; (2)2a b与2ab ;(3)3xy与- xy;
(4)2a与2ab (5)-2.1与 ; (6)5与b ;
2、请同学们思考下面的问题?
3ab+5ab=_______理由是________
-4xy2+2xy2=_______ 理由是_______
-3a+2b= 理由是_______
3、不在一起的同类项能否将同类项结合在一起?为什么?
例如:试化简多项式3x y-4xy -3+5x y+2xy +5
解:3x y-4xy -3+5x y+2xy +5--------------找出
(用不同的标志把同类项标出来!)
=3x y+5x y-4xy +2xy -3+5 ----------加法交换律
=(3x y+5x y)+(-4xy +2xy )+(-3+5)--加法结合律
=(3+5)x y+(-4+2)xy +2 ---------乘法分配律逆用
=8 x y-2 xy +2 ----------合并
探讨:
合并同类项后,所得项的系数、字母以及字母的指数与合并前各同类项的系数、字母及字母的指数有什么联系?
(三)例题讲解
例:合并下列各式中的同类项:
1).2a b-3a b+ a b 2).2a b+2ab +a b-ab
3).6a -5b +2ab+b -6a
解:1).2a b-3a b+ a b=(2-3+ )a b=- a b
方法是:(1)系数:各项系数相加作为新的系数。
(2)字母以及字母的指数不变。
2).-2a b+2ab +a b-ab --------------找出
=-2a b+a b+2ab -ab ----------加法交换律
=(-2a b+a b)+(2ab -ab)--加法结合律
=(-2+1)a b +(2-1)ab ---------乘法分配律逆用
= -a b+ ab ----------合并
3).6a -5b +2ab+b -6a
=(6a -6a )+(-5b +b )+2ab-------没有同类项照抄下来
=-4 b +2ab
思考:合并同类项的步骤是怎样?
(四)巩固练习
1、尝试训练:(1)3x +x ; (2)xy - xy ;
(3)4a+3b+2ab-4a-4b
2、请你完成:
(1) 3x-8x-9x (2) 5a2+2ab-4a2-4ab
(3) 2x-7y-5x+11y-1
3、知识延伸:
已知 与 是同类项,求m.n的值。
4.如果2abn+1与-4amb是同类项,则m=____,n=____;
5.若5xy+axy=-2xy,则a=___;
6.在6xy-3x-4xy-5yx+x中没有同类项的项是______
(五)课堂小结:
谈一谈:通过这节课的学习你学到了什么?
相同字母的指数一样
所含字母一样
②交换律
③结合律
④分配律
①找出
A.系数相加减;
B.字母和字母的指数不变。
⑤合并:
合并
法则
要点
(六)布置作业
1、在下列代数式中,指出哪些是同类项。
2x2 ,0 ,-3x ,-x2y ,(x+y)2 ,xy2, x2y ,6x ,
-x2y , 0.5 , -x2 ,2(x+y)2 ;
2、合并同类项
①3y+2y ②3b-3a3+1+a3-2b
③2y+6y+2xy-5 ④6mn+4m2n-3mn+5mn2
3、填空:
(1)在( )内填上相应字母,使得2( )3( )2与5x2y3是同类项;
(2)若x3ym和xny2是同类项,则 = ;
(3)若(n-3)x2yz和x2yz是同类项,则 ;