思维导图记忆的好方法

时间:
分享

高中数学的传统数学教学方法是以老师为主体,通过老师填鸭式地把数学知识传授给学生或者是采取题海战术,通过不断重复加深学生印象,使学生熟悉掌握知识。下面给大家分享一些关于如何培养高中数学思维,希望对大家有帮助。

如何培养高中数学思维

1.直觉来源于扎实的基础。 “直觉”不是靠“机遇”,决不是无缘无故地凭空臆想。阿提雅说:“一旦你真正感到弄懂了一样东西,而且你通过大量例子以及通过与其它东西的联系取得了处理那个问题的足够多的经验.对此你就会产生一种关于正在发展的过程是怎么回事以及什么结论应该是正确的直觉。”

2.在高中课堂教学中,数学直觉思维的培养和发展是情感教育下的产物之一,把知情融为一体,使认知和情感彼此促进,和谐发展,互相促进。敏锐的观察力是直觉思维的起步器;“一叶落而知天下秋”的联想习惯、科学美的鉴赏力是直觉思维的助跑器;强有力的语言表达能力是直觉思维的载体。我们应该做更多的工作去发展学生的直觉思维。

3.创设游戏性环境,提高学习兴趣。在数学教学中,我们应多创设一些游戏性学习环境,把所学的新知识,新技能寓于游戏活动之中,以激发学生对新知识的求知欲望和探索精神。这样既提高了学生的学习兴趣,同时也使学生受到良好的数学思想方法的熏陶。

4.重视解题教学,注重培养学生数形结合思维。华罗庚说过:“数缺形时少直觉,形缺数时难入微。”通过深入的观察、联想,由形思数,由数想形,利用图形的直观诱发直觉,对培养学生的几何直觉思维大有帮助。实施开放性问题教学,也是培养直觉思维的有效方法。当人们解一道数学题时,往往要对结果或解题途径先作大致的估量或猜测,这就是一种数学直觉思维.在解决抽象的数学问题时,要注意利用直觉思维解题,能把抽象转化为具体,本身也是一种直觉思维能力。

中数学逻辑思维能力如何培养

课前预习:学会思考,理清基础脉络

如果说兴趣是学习之父,那么,思考就是学习之母。要培养学生的逻辑思维能力,应督促学生认真、积极完成课前预习。课前预习的基本任务是理清基本的概念,对课本涉及的数学问题有一个基本了解,但是,要培养高中生逻辑思维能力,不能就此而止步。顾名思义,逻辑思维能力本身蕴含的一个关键词是“思考”,让学生带着问题去审视书本,思考相关命题,才有可能让学生集中注意力,摆脱走马观花式阅读的干扰,进而在层层推理中感受到数学思维的魅力,提起学习数学的兴趣。

教师督促学生完成课前预习,让学生带着相关问题思索,实际也是培养学生自主探索能力、推理能力的重要一步。比如,学习《函数》这一章时,教师可以先布置几个思考的问题:什么是函数,函数的定义包含哪几个不可缺少的要素(判断是否为函数的标准,也是函数的基本特点),函数有哪些种类等。让学生带着这些基本的问题去阅读书本,寻求答案,将不懂的地方做好记号,以便上课时有针对性地听讲。课前预习看似与高中数学教学培养学生逻辑思维没有直接的关联,事实并非如此,课前预习是学生自主学习时间,也是课堂顺利进行的重要前提,可以为学生掌握知识,培养逻辑思维能力打好基础。

课堂教学:疏通知识逻辑,深化理解知识链

高中数学教师在课堂上要有意识地培养学生的逻辑思维能力。课堂教学的一个基本任务是引导学生疏通知识,理清主要的知识脉络,但这只是高中数学教学最为基础的要求,教师还应该让学生学会正确的思考,深入理解知识点的核心、知识与知识间的联系,从而建立一个有效的知识网路。比如,在讲解《数列》这一章时,等差、等比数列求和公式的得出就是解决数列问题的两种基本的思路,教师在讲解时要着重让学生掌握求证的过程,总结这样的思维方式可以在哪些情况下适用。

高中数学的研习,千万要摆脱死记硬背的传统教学方式,有人会质疑说,要解答高中数学问题,记住一些概念、公式是必不可少的。我们不怀疑记忆的方式有助于我们迅速解答相关数学问题,但这不能成为学生解答问题的依赖。正如学生在遇到等差数列求和忘记了求和公式,如果我们早就用逻辑思维掌握了求和公式导出的来龙去脉,重新推导,求和公式也就出来了。这就是为什么许多擅长逻辑思维的学生平时并没有花大量时间去背公式、记概念,也能考取相对高分的原因。此外,教师还应从不同角度,引领学生以不同的方法解答问题,深化理解。

如何训练数学思维逻辑思维能力

结合基础知识教学培养逻辑思维能力

知识和能力总是相辅相成的,在向学生传授数学知识的过程中,可以培养逻辑思维能力。只要把知识的教学,作为培养能力的载体,在传授知识中,渗透或介绍逻辑思维的规律和方法,可以收到良好的效果。逻辑思维是理性认识,培养逻辑思维能为,首先使学生感受鲜明的感觉、知觉和表象,形成具体、生动、形象的感性认识,然后通过分析和综合、抽象和概括等思维活动,对感性材料进行加工整理和改造制作,形成概念、判断,最后用语言表达思维的对象,先让学生意会,使他们有朦胧感知。再分析,“它们都是由两条射线组成的,而且两条射线有公共端点”,最后抽象概括“这种由公共端点的两条射线所组成的图形叫做角”。

这种形成概念的过程,是从感性到理性的过程,在感性阶段,就是让学生对“角”有所意会,使之对角有朦胧感知,再给学生言传,使之明确领会。学生对逻辑思维的方法,从朦胧感知开始,经过一段时间的意会,在适当的时刻,可以明确地告诉学生概念、判断、推理等各种思维形式的特点、结构及其思维规律,对学生身教,使之有模可仿。教学中,教师要以身作则,作出示范,使学生学有榜样,可以模仿,教师的语言和板书,要准确严谨,富有条理,言之有据,合乎逻辑性,对学生回答问题的叙述,要求合乎逻辑性,要认真、细致,及时地纠正学生所犯的逻辑性错误。

逐步培养学生的抽象思维能力

与初中数学相比,小学数学最为重要的特征就是学生在思考的过程中,可以找到具体事物辅助思考,这也是数学入门的有效学习方法,在数学学习初期能够有效加快学生的掌握,加深学生的理解。然而,在进入初中之后,几何图形与代数式的出现要求学生抛弃辅助工具,进行抽象思维,有的学生转变较慢,导致成绩下降,自信心受到打击。因此,在实际教学活动中,教师应在抽象思维的引导上多下工夫,让学生熟悉代数式的意义与实际运用,在习题的解答中培养学生的抽象思维能力。

例如在证明三角形全等时,很多学生不是根据题目要求的条件和定理解题,而是主观地“看”,先看两个三角形是否全等,再去证明,久而久之,学生的抽象思维能力渐渐降低,更无法为以后立体几何的学习打好基础。此时教师应在练习中主动引导学生回忆学过的全等三角形证明方法,如“角边角证明法”,通过对定理的套用逐步摆脱“用眼看”的习惯。


1670