因式分解教案

时间:
分享

关于因式分解教案汇编5篇

  作为一名教学工作者,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?下面是小编整理的因式分解教案5篇,希望能够帮助到大家。

关于因式分解教案汇编5篇

因式分解教案 篇1

  15.1.1 整式

  教学目标

  1.单项式、单项式的定义.

  2.多项式、多项式的次数.

  3、理解整式概念.

  教学重点

  单项式及多项式的有关概念.

  教学难点

  单项式及多项式的有关概念.

  教学过程

  Ⅰ.提出问题,创设情境

  在七年级,我们已经学习了用字母可以表示数,思考下列问题

  1.要表示△ABC的周长需要什么条件?要表示它的面积呢?

  2.小王用七小时行驶了Skm的路程,请问他的平均速度是多少?

  结论:

  1、要表示△ABC的周长,需要知道它的各边边长.要表示△ABC的面积需要知道一条边长和这条边上的高.如果设BC=a,AC=b,AB=c.AB边上的高为h,那么△ABC的周长可以表示为a+b+c;△ABC的面积可以表示为 ?c?h.

  2.小王的平均速度是 .

  问题:这些式子有什么特征呢?

  (1)有数字、有表示数字的字母.

  (2)数字与字母、字母与字母之间还有运算符号连接.

  归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.

  判断上面得到的三个式子:a+b+c、 ch、 是不是代数式?(是)

  代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.

  Ⅱ.明确和巩固整式有关概念

  (出示投影)

  结论:(1)正方形的周长:4x.

  (2)汽车走过的路程:vt.

  (3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.

  (4)n的相反数是-n.

  分析这四个数的特征.

  它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、 中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.

  请同学们阅读课本P160~P161单项式有关概念.

  根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、 这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.

  结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、 .它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、 ch都是二次单项式;a3是三次单项式.

  问题:vt中v和t的指数都是1,它不是一次单项式吗?

  结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.

  生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?

  写出下列式子(出示投影)

  结论:(1)t-5.(2)3x+5y+2z.

  (3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2.

  (4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.

  我们可以观察下列代数式:

  a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?

  这样推理合情合理.请看投影,熟悉下列概念.

  根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.

  a+b+c的`项分别是a、b、c.

  t-5的项分别是t、-5,其中-5是常数项.

  3x+5y+2z的项分别是3x、5y、2z.

  ab-3.12r2的项分别是 ab、-3.12r2.

  x2+2x+18的项分别是x2、2x、18. 找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.

  这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.

  Ⅲ.随堂练习

  1.课本P162练习

  Ⅳ.课时小结

  通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.

  Ⅴ.课后作业

  1.课本P165~P166习题15.1─1、5、8、9题.

  2.预习“整式的加减”.

  课后作业:《课堂感悟与探究》

  15.1.2 整式的加减(1)

  教学目的:

  1、解字母表示数量关系的过程,发展符号感。

  2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

  教学重点:

  会进行整式加减的运算,并能说明其中的算理。

  教学难点:

  正确地去括号、合并同类项,及符号的正确处理。

  教学过程:

  一、课前练习:

  1、填空:整式包括 和

  2、单项式 的系数是 、次数是

  3、多项式 是 次 项式,其中二次项

  系数是 一次项是 ,常数项是

  4、下列各式,是同类项的一组是( )

  (A) 与 (B) 与 (C) 与

  5、去括号后合并同类项:

  二、探索练习:

  1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的十位数字和个位数字后得到的两位数为

  这两个两位数的和为

  2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为

  这两个三位数的差为

  ●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?

  说说你是如何运算的?

  ▲整式的加减运算实质就是

  运算的结果是一个多项式或单项式。

  三、巩固练习:

  1、填空:(1) 与 的差是

  (2)、单项式 、 、 、 的和为

  (3)如图所示,下面为由棋子所组成的三角形,

  一个三角形需六个棋子,三个三角形需

  ( )个棋子,n个三角形需 个棋子

  2、计算:

  (1)

  (2)

  (3)

  3、(1)求 与 的和

  (2)求 与 的差

  4、先化简,再求值: 其中

  四、提高练习:

  1、若A是五次多项式,B是三次多项式,则A+B一定是

  (A)五次整式 (B)八次多项式

  (C)三次多项式 (D)次数不能确定

  2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场

  记0分,那么某队在比赛胜5场,平3场,负2场,共积多

  少分?

  3、一个两位数与把它的数字对调所成的数的和,一定能被14

  整除,请证明这个结论。

  4、如果关于字母x的二次多项式 的值与x的取值无关,

  试求m、n的值。

  五、小结:整式的加减运算实质就是去括号和合并同类项。

  六、作业:第8页习题1、2、3

  15.1.2整式的加减(2)

  教学目标:1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。

  2.通过探索规律的问题,进一步符号表示的意义,发展符号感,发展推理能力。

  教学重点整式加减的运算。

  教学难点:探索规律的猜想。

  教学方法:尝试练习法,讨论法,归纳法。

  教学用具:投影仪

  教学过程:

  I探索练习:

  摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。按照这样的方式继续摆下去。

  (1)摆第10个这样的“小屋子”需要 枚棋子

  (2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。

  二、例题讲解:

  三、巩固练习:

  1、计算:

  (1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

  (3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

  2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B

  3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么

  (1)第一个角是多少度?

  (2)其他两个角各是多少度?

  四、提高练习:

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?

  2、设A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

  (y+3)2=0,且B-2A=a,求A的值。

  3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:

  试化简:│a│-│a+b│+│c-a│+│b+c│

  小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

  作 业:课本P14习题1.3:1(2)、(3)、(6),2。

因式分解教案 篇2

  因式分解

  教材分析

  因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的'方法是教学中的难点。

  教学目标

  认知目标:(1)理解因式分解的概念和好处

  (2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

  潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。

  情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。

  目标制定的思想

  1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。

  2.课堂教学体现潜力立意。

  3.寓德育教育于教学之中。

  教学方法

  1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。

  2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。

  3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。

  4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。

  5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。

  教学过程安排

  一、提出问题,创设情境

  问题:看谁算得快?(计算机出示问题)

  (1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

  (2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000

  (3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

  二、观察分析,探究新知

  (1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)

  (2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?

  a2—2ab+b2=(a—b)2②

  20x2+60x=20x(x+3)③

  (3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。

  板书课题:§7。1因式分解

  1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。

  三、独立练习,巩固新知

  练习

  1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)

  ①(x+2)(x—2)=x2—4

  ②x2—4=(x+2)(x—2)

  ③a2—2ab+b2=(a—b)2

  ④3a(a+2)=3a2+6a

  ⑤3a2+6a=3a(a+2)

  ⑥x2—4+3x=(x—2)(x+2)+3x

  ⑦k2++2=(k+)2

  ⑧x—2—1=(x—1+1)(x—1—1)

  ⑨18a3bc=3a2b·6ac

  2.因式分解与整式乘法的关系:

  因式分解

  结合:a2—b2=========(a+b)(a—b)

  整式乘法

  说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

  结论:因式分解与整式乘法正好相反。

  问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?

  (如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

  由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

  四、例题教学,运用新知:

  例:把下列各式分解因式:(计算机演示)

  (1)am+bm(2)a2—9(3)a2+2ab+b2

  (4)2ab—a2—b2(5)8a3+b6

  练习2:填空:(计算机演示)

  (1)∵2xy=2x2y—6xy2

  ∴2x2y—6xy2=2xy

  (2)∵xy=2x2y—6xy2

  ∴2x2y—6xy2=xy

  (3)∵2x=2x2y—6xy2

  ∴2x2y—6xy2=2x

  五、强化训练,掌握新知:

  练习3:把下列各式分解因式:(计算机演示)

  (1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

  (4)x2+—x(5)x2—0。01(6)a3—1

  (让学生上来板演)

  六、变式训练,扩展新知(计算机演示)

  1。若x2+mx—n能分解成(x—2)(x—5),则m=,n=

  2.机动题:(填空)x2—8x+m=(x—4),且m=

  七、整理知识,构成结构(即课堂小结)

  1.因式分解的概念因式分解是整式中的一种恒等变形

  2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。

  3.利用2中关系,能够从整式乘法探求因式分解的结果。

  4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。

  八、布置作业

  1.作业本(一)中§7。1节

  2.选做题:①x2+x—m=(x+3),且m=。

  ②x2—3x+k=(x—5),且k=。

  评价与反馈

  1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。

  2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。

  3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。

  4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。

  5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。

  6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。

因式分解教案 篇3

  (一)学习目标

  1、会用因式分解进行简单的多项式除法

  2、会用因式分解解简单的方程

  (二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。

  难点:应用因式分解解方程涉及到的较多的.推理过程是本节课的难点。

  (三)教学过程设计

  看一看

  1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:

  ①________________②__________

  2.应用因式分解解简单的一元二次方程.

  依据__________,一般步骤:__________

  做一做

  1.计算:

  (1)(-a2b2+16)÷(4-ab);

  (2)(18x2-12xy+2y2)÷(3x-y).

  2.解下列方程:

  (1)3x2+5x=0;

  (2)9x2=(x-2)2;

  (3)x2-x+=0.

  3.完成课后练习题

  想一想

  你还有哪些地方不是很懂?请写出来。

  ____________________________________

  (四)预习检测

  1.计算:

  2.先请同学们思考、讨论以下问题:

  (1)如果A×5=0,那么A的值

  (2)如果A×0=0,那么A的值

  (3)如果AB=0,下列结论中哪个正确( )

  ①A、B同时都为零,即A=0,

  且B=0;

  ②A、B中至少有一个为零,即A=0,或B=0;

  (五)应用探究

  1.解下列方程

  2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值

  (六)拓展提高:

  解方程:

  1、(x2+4)2-16x2=0

  2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?

  (七)堂堂清练习

  1.计算

  2.解下列方程

  ①7x2+2x=0

  ②x2+2x+1=0

  ③x2=(2x-5)2

  ④x2+3x=4x

因式分解教案 篇4

  教学目标:

  1、进一步巩固因式分解的概念; 2、巩固因式分解常用的三种方法

  3、选择恰当的方法进行因式分解 4、应用因式分解来解决一些实际问题

  5、体验应用知识解决问题的乐趣

  教学重点:灵活运用因式分解解决问题

  教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3

  教学过程:

  一、创设情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

  二、知识回顾

  1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.

  判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)

  (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

  (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

  (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

  (7).2πR+2πr=2π(R+r) 因式分解

  2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程.

  分解因式要注意以下几点: (1).分解的对象必须是多项式.

  (2).分解的结果一定是几个整式的乘积的形式. (3).要分解到不能分解为止.

  3、因式分解的`方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

  公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

  4、强化训练

  试一试把下列各式因式分解:

  (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

  三、例题讲解

  例1、分解因式

  (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

  (3) (4)y2+y+例2、分解因式

  1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

  4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

  三、知识应用

  1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除吗?还能被哪些整数整除?

  四、拓展应用

  1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除吗?

  3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.

  五、课堂小结:今天你对因式分解又有哪些新的认识?

因式分解教案 篇5

  教学目标:

  1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。

  2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

  3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。

  4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。

  教学重点:

  应用平方差公式分解因式.

  教学难点:

  灵活应用公式和提公因式法分解因式,并理解因式分解的要求.

  教学过程:

  一、复习准备 导入新课

  1、什么是因式分解?判断下列变形过程,哪个是因式分解?

  ①(x+2)(x-2)= ②

  ③

  2、我们已经学过的因式分解的`方法有什么?将下列多项式分解因式。

  x2+2x

  a2b-ab

  3、根据乘法公式进行计算:

  (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

  二、合作探究 学习新知

  (一) 猜一猜:你能将下面的多项式分解因式吗?

  (1)= (2)= (3)=

  (二)想一想,议一议: 观察下面的公式:

  =(a+b)(a—b)(

  这个公式左边的多项式有什么特征:_____________________________________

  公式右边是__________________________________________________________

  这个公式你能用语言来描述吗? _______________________________________

  (三)练一练:

  1、下列多项式能否用平方差公式来分解因式?为什么?

  ① ② ③ ④

  2、你能把下列的数或式写成幂的形式吗?

  (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

  (四)做一做:

  例3 分解因式:

  (1) 4x2- 9 (2) (x+p)2- (x+q)2

  (五)试一试:

  例4 下面的式子你能用什么方法来分解因式呢?请你试一试。

  (1) x4- y4 (2) a3b- ab

  (六)想一想:

  某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?

241659