二次根式教案

时间:
分享

【精华】二次根式教案4篇

  作为一位优秀的人民教师,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。写教案需要注意哪些格式呢?以下是小编为大家收集的二次根式教案4篇,欢迎大家借鉴与参考,希望对大家有所帮助。

【精华】二次根式教案4篇

二次根式教案 篇1

  教学目标

  1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;

  2.熟练地进行二次根式的加、减、乘、除混合运算.

  教学重点和难点

  重点:含二次根式的式子的混合运算.

  难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.

  教学过程设计

  一、复习

  1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.

  指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.

  2.二次根式 的乘法及除法的法则是什么?用式子表示出来.

  指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,

  计算结果要把分母有理化.

  3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:

  4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:

  二、例题

  例1 x取什么值时,下列各式在实数范围内有意义:

  分析:

  (1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;

  (3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;

  (4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.

  x-2且x0.

  解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.

  解 因为1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.

  问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?

  分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.

  注意:

  所以在化简过程中,

  例6

  分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、课堂练习

  1.选择题:

  A.a2B.a2

  C.a2D.a<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空题:

  4.计算:

  四、小结

  1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.

  2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.

  3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.

  4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.

  五、作业

  1.x是什么值时,下列各式在实数范围内有意义?

  2.把下列各式化成最简二次根式:

二次根式教案 篇2

  目 标

  1. 熟练地运用二次根式的性质化简二次根式;

  2. 会运用二次根式解决简单的实际问题;

  3. 进一步体验二次根式及其运算的实际意义和应用价值。

  教学设想

  本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。

  教 学 程序 与 策 略

  一、预习检测

  1.解决节前问题:

  如图,架在消防车上的云梯AB长为15m,AD:BD=1 :0.6,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?

  归纳:

  在日常生活和生产实际中,我们在解决一 些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。

  二、合作交流:

  1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到0.01米)

  让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?

  注意解题格式

  教 学 程 序 与 策 略

  三、巩固练习:

  完成课本P17、1,组长检查反馈;

  四、拓展提高:

  1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。

  师生共同分析解题思路,请学生写出解题过程。

  五、课堂小结:

  1.谈一谈:本节课你有什么收获?

  2.运用二次根式解决简单的实际问题时应注意的的问题

  六、堂堂清

  1: 作业本(2)

  2:课本P17页:第4、5题选做。

二次根式教案 篇3

  一、教学目标

  1。使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。

  2。使学生掌握化简一个二次根式成最简二次根式的方法。

  3。使学生了解把二次根式化简成最简二次根式在实际问题中的应用。

  二、教学重点和难点

  1。重点:能够把所给的二次根式,化成最简二次根式。

  2。难点:正确运用化一个二次根式成为最简二次根式的方法。

  三、教学方法

  通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法。

  四、教学手段

  利用投影仪。

  五、教学过程

  (一)引入新课

  提出问题:如果一个正方形的面积是0。5m2,那么它的边长是多少?能不能求出它的近似值?

  了。这样会给解决实际问题带来方便。

  (二)新课

  由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

  这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。

  总结满足什么样的条件是最简二次根式。即:满足下列两个条件的二次根式,叫做最简二次根式:

  1。被开方数的因数是整数,因式是整式。

  2。被开方数中不含能开得尽方的.因数或因式。

  例1 指出下列根式中的最简二次根式,并说明为什么。

  分析:

  说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。

  例2 把下列各式化成最简二次根式:

  说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。

  例3 把下列各式化简成最简二次根式:

  说明:

  1。引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。

  2。要提问学生

  问题,通过这个小题使学生明确如何使用化简中的条件。

  通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。

  注意:

  ①化简时,一般需要把被开方数分解因数或分解因式。

  ②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。

  (三)小结

  1。满足什么条件的根式是最简二次根式。

  2。把一个二次根式化成最简二次根式的主要方法。

  (四)练习

  1。指出下列各式中的最简二次根式:

  2。把下列各式化成最简二次根式:

  六、作业

  教材P。187习题11。4;A组1;B组1。

  七、板书设计

二次根式教案 篇4

  一、教学目标

  1.理解分母有理化与除法的关系.

  2.掌握二次根式的分母有理化.

  3.通过二次根式的分母有理化,培养学生的运算能力.

  4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想

  二、教学设计

  小结、归纳、提高

  三、重点、难点解决办法

  1.教学重点:分母有理化.

  2.教学难点:分母有理化的技巧.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习小结,归纳整理,应用提高,以学生活动为主

  七、教学过程

  【复习提问】

  二次根式混合运算的步骤、运算顺序、互为有理化因式.

  例1 说出下列算式的运算步骤和顺序:

  (1) (先乘除,后加减).

  (2) (有括号,先去括号;不宜先进行括号内的运算).

  (3)辨别有理化因式:

  有理化因式: 与 , 与 , 与 …

  不是有理化因式: 与 , 与 …

  化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).

  例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?

  引入新课题.

  【引入新课】

  化简式子 ,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以 的有理化因式,而这个式子就是 ,从而可将式子化简.

  例2 把下列各式的分母有理化:

  (1) ; (2) ; (3)

  解:略.

  注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.

244852