解决问题的策略假设教学反思
身为一位优秀的教师,我们需要很强的教学能力,借助教学反思我们可以快速提升自己的教学能力,那要怎么写好教学反思呢?以下是小编收集整理的解决问题的策略假设教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
解决问题的策略假设教学反思1
这一课是新教材中的比较有难度的一节课,以前策略的叫法是替换,现如今改成了假设,虽然叫法不同,但是课的本质是一样的,要求学生能够学会假设这一策略将两种未知量转化成一种未知量,使得原本比较复杂的问题变得简单一些。
选择这一节课也算是一种挑战,可以说,在课前准备的时候,觉得如果按照教案中的流程来应该来说还是比较清晰和流畅的。可是,预想的总归是和实际有一定得差距。接下来,就第一次磨课的`感受来谈一谈。
首先,在新课教授前,有一个预习反馈,这一个反馈最主要的就是要让学生初步感受转化的数学思想,因为转化是本节课中的一个重要思路,假设就是以这一思想为基础的。同时,也让学生认识到,在以前的学习中,我们大多碰到的问题是解决一种未知量的题目。可是,在这一环节结束后,没有对其进行一个小结过度,这就使得预习反馈的内容与新课没有联系起来。
其次,新授过程比较凌乱。原因很大程度上我被学生的思维牵着走了,并且回不到我之前预想的方案中。然后感觉是越来越乱,自己也没有在一些小的问题上处理好,使得有时候自己的思路出现了混乱。课堂中对老师的考验还是很大的,对学生要会及时引导,对学生课堂中生成的问题及时利用和处理等等。
解决问题的策略假设教学反思2
对于新教材中“假设”的策略我是这样理解的:“假设”是解决问题的一种思想方法,“换”是为了实现“假设”的一种手段。策略的教学更强调让学生感悟和体验,只有真正地充分地感悟和体验,才能实现对于策略的“悟”。本课,我带领学生提出问题、研究问题、解决问题、归纳总结,较充分地经历了体验与感悟的过程。
1.比较式渗透,自然过渡导入
课始我由易渐难,让学生抢答:(1)把720毫升果汁,倒入9个同样大的杯子里,正好可以倒满,平均每个杯子的容量是多少毫升?(2)把720毫升果汁,倒入3个同样大的杯子里,正好可以倒满,平均每个杯子的容量是多少毫升?紧接着出示:例1小明把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的13。小杯和大杯的容量各是多少毫升?继续抢答,当学生迟迟不举手、面露为难之色时,我忙上前关切地问:“怎么了?”生道:“有点儿难?”我顺势同时出示这3道题,说:“这题和前两题比,难在何处?”有了比较,学生立即反映出:“这题有两种杯子,两个未知量,而前两题只有一个杯子,一个未知量。”我顺势利导,装作恍然大悟:“噢,是呀,如果这一题也能像前两题一样只有……学生接过话茬说:“要是也只有一种杯子就简单了。”我开玩笑地说:“你们想得可真美!这个美好的愿望能实现吗?”抓住学生这一迫切地心理需要,我紧接着引导学生仔细分析题中的数量关系,展开了新授序幕。
正是因为有了比较,在接下来的学习中学生才切身感受到运用假设策略的好处,才乐于运用这种策略。
2.步步逼问,注重学生问题意识的培养
假设策略的本质是对于一个新问题通过对未知量进行假设,然后通过分析逐步逼近正确答案,最后把答案给“找”出来,从而使问题得以解决,它体现了一种逐步逼近的思想。也就是对于假设的策略来说,假设只是一个引子,其根本应该是根据两种未知量之间的关系实现假设,是通过“换”来“找”出答案。当学生分析完题中的`条件时,我话锋一转:“还记得刚刚咱们许下的愿望吗?”“你想假设都是什么杯子?你的这个愿望能实现吗?怎么实现你的愿望?依据是什么?”“还有不同的想法吗?”在展示交流学生的解题过程时,我让学生互相提问,并对提问作出明确要求:“通过你的提问一步步逼出他说出具体的想法。”通过猜想启发学生思路,引导学生提出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。最后让学生选择喜欢的方法列式解答。
有学生这样列方程:3X+X=720,立即有学生反对,我忙引导:“你来问他,通过你的提问让他知道自己的错误。”那学生立即问:“你是怎么设的?”答:“我设小杯的容量是X毫升,大杯是3X毫升。”问:“那你方程中3X表示什么?”答:“大杯的容量。”问:“X是什么?”答:“小杯的容量。”问:“X表示几个小杯的容量?”答:“1个小杯的容量。”问:“大杯的容量加1个小杯的容量等于720毫升吗?”生傻眼……
3.及时归纳提炼,形成策略。
虽然策略的学习关键在悟,要多让学生体验和感悟,但这并不因此就否定或削弱总结与概括的作用。事实上,必要的总结、归纳与提炼对于学生形成对策略的清晰的认识,建立策略模型起到非常重要的作用。本课,当学生经历了铺垫渗透,探索感悟两个环节后,对假设的策略已经有了一定的认识,这时就适时引导学生进行归纳提炼:回顾解题过程,你有什么想说的吗?在解决例1时我们遇到了什么困难,通过和前两题的比较有了什么想法,怎样解决困难的,需要注意什么?通过这样的归纳与提炼,学生对假设的策略就有了整体的认识,从而可以在解决问题中实际正确地运用假设的策略。
4.由形象到抽象,培养学生的数学意识
整节课,我由扶到放,出示例题时结合情境图让学生理解题意,并画一画体现“换”的过程,这样更形象,更简单易懂。画图假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。所以当学生对“假设”的思想初步感悟后,在练习时我先是引领学生分析关键句,说一说解题思路,再完成,最后是完全放手让学生独立解决问题再向指名汇报叙说自己的解题过程。
总之,数学的学习,对学生来说,能使其终身受用的,绝不仅仅是知识,数学思想方法的获得更重要,我想这也应该是解决问题的策略的教学目的之一。
解决问题的策略假设教学反思3
第一课时
假设是解决问题的常用策略之一,对学生分析实际问题的数量关系,积累解决问题的经验,感悟一些基本的数学思想方法,提高分析和解决问题的能力,都有着十分重要的意义。因此,我认真钻研教材,对照“真学课堂”的要求,精心设计了这一课时。
一、课前交流,渗透“等量代换”思想
“等量代换”是假设策略的核心思想,我在课前让学生重温了“曹冲称象”的故事,意在让学生明白曹冲用石头的重量来替代大象的重量实际上就是蕴含了一种数学思想“等量代换”,为解决课上的实际问题作了铺垫。在解决例1时,也确实起到了作用,大部分学生能很顺利的想到将大杯换成小杯,或将小杯换成大杯。
二、创设问题情境,形成认知冲突。
在学生口答完简单的只有一个未知量的题目后,出示例1含有两个未知量的题目,呈现对比强烈的问题,引导学生比较问题的结构特点,形成认知冲突,进而产生把复杂的问题转化成简单问题的心理需求,激发学生进一步探求解决问题策略的欲望。
三、以学定教,教学中适时调整教案
在教学例1时环节,我的教学预案上,我预设了学生解决问题的三种思路:第一种是全部是小杯或全部是大杯,第二种是通过画图再解答,第三种是列方程解答。但是在课堂上学生都是采用了第一种假设方法,画图也只有极个别的学生,全班没有列方程解答的`学生。这时,我就调整教案,展示了第一种思路。方程的解法,我选择是一带而过,只需要让学生了解这类题目也可以用方程解答,方程也是假设的思想,而且列方程解答,相对列式解答来说就复杂一些,既然学生能掌握列式解答的方法,就不必要求他们列方程。
四、自主尝试后小组活动
非操作类小组活动,应该建立在学生充分自主的基础上。在解决例1时,我先让学生独立思考、自主尝试,列式解答。再让学生在小组内活动,说清楚每一步求的是什么。这样让组内学习较好的学生有自我展示的机会,对于后进生来说,在自主尝试的时候没有得出解决问题的方法,那么在小组活动的时候,他们可以听取组内其他成员的思路与方法,对他们理解题目起到帮助作用。个人认为在这些非操作类小组活动前,先由学生自主尝试,能培养学生面对难题时独立思考的习惯,让学生有勇气去面对难题。如果没有给予学生充分自主思考尝试的时间就进行小组活动,这样就会让学生对他人产生依赖,形成惰性,面对难题时也就失去了战胜困难的勇气。
五、展示交流多样化。
真学课堂的要求指出:要给学生充分展示、主动交流的机会。我在本节课中运用了组内展示、全班展示,直观展示、口答展示等形式。在学生小组活动时,让学生在组内充分展示自己的思路,在小组活动结束后我选取了两种不同方法的作业纸,通过投影仪展示在前面的白板上,让学生直观清晰的看清楚他人的作业,这时我并没有请被展示作业的学生进行自己作业的讲解,而是请全班同学共同思考这份作业的每一步求的是什么?再指名回答。我认为被展示作业的学生已经在小组内展示过了,没有必要让他再讲解一遍,应该给予他们更多发言的机会,同时又给予了全班同学又一次理清算式每一步的机会,再指名回答,在倾听他人回答的时候,这时全班同学又进行了第三次思考。
在展示“试一试”解题过程时,我并没有在投影仪下展示学生的解题过程。因为我通过巡视,发现全班基本都会做这道题,所以我只是让学生站起来回答问题,同时提醒学生倾听,这样让学生一边倾听同伴的发言,一边思考同伴说的是否正确。既培养了学生倾听的习惯,同时在倾听的同时又思考了一遍,强化了解题思路。
不足的地方:
一、回顾总结不到位。
教材上安排了“回顾解决问题的过程,你有什么体会?”这一环节,而我只是把这些渗透在解决具体题目中,并没有作为一个环节,回顾解决了的问题。我应该启发学生从为什么假设、怎样假设、假设后怎样思考等方面展开交流,并作适时的提炼和概括,以提升认识。
二、没有充分调动学生的积极性。
整节课,可能由于后面坐了听课的老师,学生有些紧张,举手的学生不多。我没能很好的调动他们的发言积极性,所以有很多学生会回答但是手却不举起来,这就需要我平时在教学中要注意,多使用激励性语言,多鼓励孩子。
三、关注学困生还不够。
解决问题的策略在小学阶段是比较有难度的一部分,特别是对于学困生,不容易理解。这就需要我们老师在课堂上要时时的去关注他们,不能只考虑课堂的时间安排,而忽视了他们。
解决问题的策略假设教学反思4
解决问题的策略(假设)是在学生学习了一些解决问题的策略和用列方程解决实际问题的基础上进行教学的。因为学生具有相当的基础知识和知识迁移的能力,教学中可以尽量放手,让孩子自己去尝试、去探索、去获取知识。
首先,我注意以学生的生活经验和已有知识为基准,把握好教学的起点,精心创设了两个复习题目,这两个复习题目是从例题改编过来的,为教学例题做了很好的铺垫,让学生养成寻找数量关系的习惯。充分调动起学生的学习积极性。
接着,出示例题,让学生比较例题与复习题的相同与不同之处,分析题意和找出数量关系,学生交流各自方法,尝试解决问题。学生会联系以前的知识解决这个问题,也会根据复习题的铺垫想出一种新的思路。简单复习一下以前学过的两种方法,着重讲解第三种策略。这样教学,旨在让学生复习旧知,体会解决问题的多种方法,且通过不同方法的比较,找出假设策略的本质。从而真正理解假设策略,掌握运用假设策略解决问题的方法。在教学“运用假设策略”的重难点时,让学生形成解题思路,学会怎样从假设出发思考问题,根据这样的思路列出算式,并体会检验的好处。这样学生不但体验到探索的乐趣和成功的喜悦,又有利于学生自主学习能力的培养。
练习内容回归生活,桌子和椅子这一学生熟悉的事物,让学生运用所学知识去解决生活中的实际问题,深刻感受生活与数学的密切联系,学会用数学的'眼光去看周围事物、想身边的事情。联系以前曾经使用假设策略的地方,拓展学生数学学习的领域。实践证明:结合生活,可以使学生深刻感受假设策略解决问题的应用价值,大大激发了学生学习数学的兴趣。
总之,整个过程体现“学生主体,教师主导”的互动模式,让学生通过自身的思考、体验、理解、吸收、内化等过程进行知识建构,让学生在体验中思考,在思考中理解,在理解中提升知识的应用能力。在实践中发展解决问题的能力。
本节课仍存在一些不足:
①对学生的解题过程应力求规范,比如个别列算式不规范,不能很好的体现思考过程,所以应加强学生的养成教育。
②评价语言和方式过于单一等。
总之,我将不断反思总结教学实践中的经验和教训,使自己的教学水平更上一层楼!
解决问题的策略假设教学反思5
12月11日教研室成员来我校常规调研,汪主任听了我的一节《解决问题的策略》,课前我是这样思考的:学生在例题1中初步体验了替换的策略,教学例题2时要主动应用这些策略解决实际问题。教材鼓励学生解决问题方法的多样化,所以在实际教学中,我要注意把握。如:提出的假设可以是多样的。教材呈现了两种比较典型的假设,即假设10只都是大船和假设大船和小船各5只。另外开展替换活动的载体可以是多样的,图画枚举和列表枚举等,这些都是已经教学的解决问题的策略,学生有能力应用这些策略。结合使用画图、列表、枚举,也体现了解决问题的策略是综合而灵活的。
教学例题2时,一是组织猜想,引发假设,拓展思路。在创设情境后可以让学生猜一猜可能是10只怎样的船。通过猜想启发学生思路,引导学生指出自己的假设,激发解决问题的积极性,营造解法多样化的氛围。二是验证假设,引导替换,有序思考。每一个学生都要对自己的假设进行验证,看这些船是否正好能坐42人。如果学生的'假设多样了,那么大多数假设都不是问题的答案,需要调整,即进行相应的替换。学生的替换活动逐步进行, 培养学生有序思考的习惯。三是交流解法,寻找共性,体验策略。可以先交流各种假设与替换的方法,以及采用画图或列表的策略,发展思维的开放性与灵活性,再寻找这些方法的共同特点,进一步体会解决问题的策略。
例题2是综合运用多种策略解决实际问题,所以学生思考的空间大了,难度高了。对于教材上出现的画图假设,列表假设,等等,都可以肯定,在教学中不必要求学生掌握每种方法,可选择自己最合适的方法理解。并且要让学生体会到,例题2中介绍的画图假设、列表假设比较直观,利于学生的思考,但我们的思维不能一直停留在直观的画图列表等具体方法,要逐步抽象,并用计算的方法体现假设的思维过程。
课后经过汪主任的评点,使我对教材有了更深层次的领悟。特别是对假设这个策略,最后提炼出经典的4个词假设比较调整检验4个步骤,这是我课上没有概括出来的。虽然我是按照这几步来做的。但没有概括出来,学生仅仅停留在解决问题上。学生还处于模仿状态。
解决问题的策略这一单元是新课程的一个创新,以前所没有涉及的,我在教学中也是努力在学习。往往是拿到教材,先翻阅教师用书,看看前人是怎样总结的,他的意图怎样,但往往会框住我们的思维,所以汪主任鼓励我们要有自己的思考,自己的创新。这是我要努力的方向。让我以三个学来勉励自己:教学也;始于自学学也;终于教人,学也。